metadata
license: other
tags:
- generated_from_trainer
datasets:
- AlekseyKorshuk/dalio-synthetic-io
metrics:
- accuracy
model-index:
- name: dalio-synthetic-io-1.3b
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: AlekseyKorshuk/dalio-synthetic-io
type: AlekseyKorshuk/dalio-synthetic-io
metrics:
- name: Accuracy
type: accuracy
value: 0.06235550115599075
dalio-synthetic-io-1.3b
This model is a fine-tuned version of facebook/opt-1.3b on the AlekseyKorshuk/dalio-synthetic-io dataset. It achieves the following results on the evaluation set:
- Loss: 2.5957
- Accuracy: 0.0624
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.6941 | 0.05 | 1 | 2.6543 | 0.0622 |
2.6914 | 0.11 | 2 | 2.6543 | 0.0622 |
2.6003 | 0.16 | 3 | 2.6016 | 0.0627 |
2.5603 | 0.21 | 4 | 2.5703 | 0.0627 |
2.6072 | 0.26 | 5 | 2.5508 | 0.0630 |
2.5444 | 0.32 | 6 | 2.5469 | 0.0628 |
2.4467 | 0.37 | 7 | 2.5508 | 0.0629 |
2.5452 | 0.42 | 8 | 2.5508 | 0.0629 |
2.6128 | 0.47 | 9 | 2.5449 | 0.0631 |
2.4568 | 0.53 | 10 | 2.5391 | 0.0627 |
2.5098 | 0.58 | 11 | 2.5352 | 0.0628 |
2.6047 | 0.63 | 12 | 2.5234 | 0.0631 |
2.5022 | 0.68 | 13 | 2.5156 | 0.0630 |
2.605 | 0.74 | 14 | 2.5078 | 0.0633 |
2.6055 | 0.79 | 15 | 2.5020 | 0.0634 |
2.5061 | 0.84 | 16 | 2.4961 | 0.0632 |
2.4348 | 0.89 | 17 | 2.4902 | 0.0631 |
2.6284 | 0.95 | 18 | 2.4883 | 0.0632 |
2.5574 | 1.0 | 19 | 2.4863 | 0.0631 |
2.0814 | 1.05 | 20 | 2.4844 | 0.0633 |
2.0636 | 1.11 | 21 | 2.4844 | 0.0635 |
1.9459 | 1.16 | 22 | 2.4844 | 0.0635 |
2.0527 | 1.21 | 23 | 2.4883 | 0.0634 |
1.8881 | 1.26 | 24 | 2.4961 | 0.0635 |
1.8668 | 1.32 | 25 | 2.5117 | 0.0636 |
2.0375 | 1.37 | 26 | 2.5293 | 0.0636 |
1.9402 | 1.42 | 27 | 2.5449 | 0.0632 |
1.6086 | 1.47 | 28 | 2.5586 | 0.0633 |
1.8185 | 1.53 | 29 | 2.5645 | 0.0632 |
1.7324 | 1.58 | 30 | 2.5605 | 0.0630 |
1.9285 | 1.63 | 31 | 2.5527 | 0.0628 |
1.8031 | 1.68 | 32 | 2.5449 | 0.0631 |
1.7321 | 1.74 | 33 | 2.5352 | 0.0630 |
1.7802 | 1.79 | 34 | 2.5254 | 0.0631 |
2.0637 | 1.84 | 35 | 2.5156 | 0.0632 |
1.8159 | 1.89 | 36 | 2.5078 | 0.0633 |
1.7142 | 1.95 | 37 | 2.5039 | 0.0634 |
1.8793 | 2.0 | 38 | 2.5 | 0.0634 |
1.6914 | 2.05 | 39 | 2.5020 | 0.0636 |
1.411 | 2.11 | 40 | 2.5039 | 0.0639 |
1.4182 | 2.16 | 41 | 2.5098 | 0.0639 |
1.6223 | 2.21 | 42 | 2.5176 | 0.0638 |
1.623 | 2.26 | 43 | 2.5273 | 0.0634 |
1.5748 | 2.32 | 44 | 2.5371 | 0.0634 |
1.7166 | 2.37 | 45 | 2.5469 | 0.0631 |
1.3432 | 2.42 | 46 | 2.5566 | 0.0630 |
1.5325 | 2.47 | 47 | 2.5645 | 0.0631 |
1.5076 | 2.53 | 48 | 2.5723 | 0.0629 |
1.6636 | 2.58 | 49 | 2.5781 | 0.0627 |
1.2897 | 2.63 | 50 | 2.5840 | 0.0627 |
1.4559 | 2.68 | 51 | 2.5879 | 0.0627 |
1.3904 | 2.74 | 52 | 2.5898 | 0.0627 |
1.4961 | 2.79 | 53 | 2.5918 | 0.0626 |
1.5276 | 2.84 | 54 | 2.5938 | 0.0625 |
1.3479 | 2.89 | 55 | 2.5957 | 0.0625 |
1.4094 | 2.95 | 56 | 2.5957 | 0.0624 |
1.5486 | 3.0 | 57 | 2.5957 | 0.0624 |
Framework versions
- Transformers 4.25.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1