File size: 3,314 Bytes
989666f 6e283f4 989666f 6e283f4 989666f 43d0c8c 989666f 6e283f4 989666f 6e283f4 989666f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model_index:
- name: bert-srb-ner-setimes
results:
- task:
name: Token Classification
type: token-classification
metric:
name: Accuracy
type: accuracy
value: 0.9645112274185379
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-srb-ner-setimes
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1955
- Precision: 0.8229
- Recall: 0.8465
- F1: 0.8345
- Accuracy: 0.9645
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 104 | 0.2281 | 0.6589 | 0.7001 | 0.6789 | 0.9350 |
| No log | 2.0 | 208 | 0.1833 | 0.7105 | 0.7694 | 0.7388 | 0.9470 |
| No log | 3.0 | 312 | 0.1573 | 0.7461 | 0.7778 | 0.7616 | 0.9525 |
| No log | 4.0 | 416 | 0.1489 | 0.7665 | 0.8091 | 0.7872 | 0.9557 |
| 0.1898 | 5.0 | 520 | 0.1445 | 0.7881 | 0.8327 | 0.8098 | 0.9587 |
| 0.1898 | 6.0 | 624 | 0.1473 | 0.7913 | 0.8316 | 0.8109 | 0.9601 |
| 0.1898 | 7.0 | 728 | 0.1558 | 0.8101 | 0.8347 | 0.8222 | 0.9620 |
| 0.1898 | 8.0 | 832 | 0.1616 | 0.8026 | 0.8302 | 0.8162 | 0.9612 |
| 0.1898 | 9.0 | 936 | 0.1716 | 0.8127 | 0.8409 | 0.8266 | 0.9631 |
| 0.0393 | 10.0 | 1040 | 0.1751 | 0.8140 | 0.8369 | 0.8253 | 0.9628 |
| 0.0393 | 11.0 | 1144 | 0.1775 | 0.8096 | 0.8420 | 0.8255 | 0.9626 |
| 0.0393 | 12.0 | 1248 | 0.1763 | 0.8161 | 0.8386 | 0.8272 | 0.9636 |
| 0.0393 | 13.0 | 1352 | 0.1949 | 0.8259 | 0.8400 | 0.8329 | 0.9634 |
| 0.0393 | 14.0 | 1456 | 0.1842 | 0.8205 | 0.8420 | 0.8311 | 0.9642 |
| 0.0111 | 15.0 | 1560 | 0.1862 | 0.8160 | 0.8493 | 0.8323 | 0.9646 |
| 0.0111 | 16.0 | 1664 | 0.1989 | 0.8176 | 0.8367 | 0.8270 | 0.9627 |
| 0.0111 | 17.0 | 1768 | 0.1945 | 0.8246 | 0.8409 | 0.8327 | 0.9638 |
| 0.0111 | 18.0 | 1872 | 0.1997 | 0.8270 | 0.8426 | 0.8347 | 0.9634 |
| 0.0111 | 19.0 | 1976 | 0.1917 | 0.8258 | 0.8491 | 0.8373 | 0.9651 |
| 0.0051 | 20.0 | 2080 | 0.1955 | 0.8229 | 0.8465 | 0.8345 | 0.9645 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0
- Datasets 1.11.0
- Tokenizers 0.10.1
|