File size: 2,644 Bytes
760b7cb
 
7aa8846
760b7cb
 
 
 
 
 
 
 
 
 
 
 
7aa8846
760b7cb
ca646cf
760b7cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
513aafc
 
760b7cb
 
 
513aafc
760b7cb
 
 
 
 
 
ca646cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760b7cb
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: apache-2.0
base_model: google/flan-t5-base
tags:
- generated_from_trainer
model-index:
- name: ingredient_prune
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ingredient_prune

This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2171

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 38.6247       | 0.18  | 10   | 28.2426         |
| 26.1854       | 0.36  | 20   | 20.2002         |
| 19.6623       | 0.55  | 30   | 13.6317         |
| 13.5288       | 0.73  | 40   | 6.1384          |
| 7.0646        | 0.91  | 50   | 4.3907          |
| 4.6726        | 1.09  | 60   | 4.1267          |
| 4.2044        | 1.27  | 70   | 3.8144          |
| 3.9212        | 1.45  | 80   | 3.4817          |
| 3.6409        | 1.64  | 90   | 2.9574          |
| 3.2497        | 1.82  | 100  | 2.0126          |
| 2.8668        | 2.0   | 110  | 1.5548          |
| 2.5591        | 2.18  | 120  | 1.3483          |
| 2.2817        | 2.36  | 130  | 0.9596          |
| 2.0322        | 2.55  | 140  | 0.7737          |
| 1.7896        | 2.73  | 150  | 0.6418          |
| 1.5978        | 2.91  | 160  | 0.5350          |
| 1.4263        | 3.09  | 170  | 0.4166          |
| 1.3053        | 3.27  | 180  | 0.3914          |
| 1.1636        | 3.45  | 190  | 0.3543          |
| 1.0639        | 3.64  | 200  | 0.3054          |
| 1.0036        | 3.82  | 210  | 0.2860          |
| 0.9076        | 4.0   | 220  | 0.2683          |
| 0.8769        | 4.18  | 230  | 0.2524          |
| 0.8282        | 4.36  | 240  | 0.2333          |
| 0.8092        | 4.55  | 250  | 0.2233          |
| 0.771         | 4.73  | 260  | 0.2198          |
| 0.7718        | 4.91  | 270  | 0.2171          |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2