metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
model-index:
- name: Cinnamon-Plant-50-Epochs-Model
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8958333333333334
- name: F1
type: f1
value: 0.8959694989106755
Cinnamon-Plant-50-Epochs-Model
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3989
- Accuracy: 0.8958
- F1: 0.8960
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.0428 | 1.0 | 18 | 0.2528 | 0.9167 | 0.9167 |
0.0218 | 2.0 | 36 | 0.3322 | 0.875 | 0.8763 |
0.0149 | 3.0 | 54 | 0.2954 | 0.875 | 0.8763 |
0.0121 | 4.0 | 72 | 0.2941 | 0.8958 | 0.8965 |
0.0106 | 5.0 | 90 | 0.3093 | 0.875 | 0.8763 |
0.0096 | 6.0 | 108 | 0.3130 | 0.8958 | 0.8965 |
0.0088 | 7.0 | 126 | 0.3227 | 0.875 | 0.8763 |
0.0082 | 8.0 | 144 | 0.3197 | 0.9167 | 0.9170 |
0.0077 | 9.0 | 162 | 0.3323 | 0.8958 | 0.8965 |
0.0073 | 10.0 | 180 | 0.3310 | 0.9167 | 0.9170 |
0.0069 | 11.0 | 198 | 0.3378 | 0.9167 | 0.9170 |
0.0066 | 12.0 | 216 | 0.3427 | 0.8958 | 0.8965 |
0.0064 | 13.0 | 234 | 0.3437 | 0.9167 | 0.9170 |
0.0061 | 14.0 | 252 | 0.3483 | 0.9167 | 0.9170 |
0.0059 | 15.0 | 270 | 0.3504 | 0.9167 | 0.9170 |
0.0057 | 16.0 | 288 | 0.3539 | 0.9167 | 0.9170 |
0.0055 | 17.0 | 306 | 0.3597 | 0.8958 | 0.8965 |
0.0054 | 18.0 | 324 | 0.3623 | 0.8958 | 0.8965 |
0.0052 | 19.0 | 342 | 0.3638 | 0.8958 | 0.8965 |
0.0051 | 20.0 | 360 | 0.3670 | 0.8958 | 0.8965 |
0.0049 | 21.0 | 378 | 0.3672 | 0.9167 | 0.9170 |
0.0048 | 22.0 | 396 | 0.3690 | 0.9167 | 0.9170 |
0.0047 | 23.0 | 414 | 0.3704 | 0.9167 | 0.9170 |
0.0046 | 24.0 | 432 | 0.3735 | 0.9167 | 0.9170 |
0.0045 | 25.0 | 450 | 0.3748 | 0.8958 | 0.8960 |
0.0044 | 26.0 | 468 | 0.3775 | 0.9167 | 0.9170 |
0.0044 | 27.0 | 486 | 0.3779 | 0.8958 | 0.8960 |
0.0043 | 28.0 | 504 | 0.3797 | 0.8958 | 0.8960 |
0.0042 | 29.0 | 522 | 0.3818 | 0.8958 | 0.8960 |
0.0041 | 30.0 | 540 | 0.3840 | 0.8958 | 0.8960 |
0.0041 | 31.0 | 558 | 0.3845 | 0.8958 | 0.8960 |
0.004 | 32.0 | 576 | 0.3861 | 0.8958 | 0.8960 |
0.004 | 33.0 | 594 | 0.3877 | 0.8958 | 0.8960 |
0.0039 | 34.0 | 612 | 0.3892 | 0.8958 | 0.8960 |
0.0039 | 35.0 | 630 | 0.3901 | 0.8958 | 0.8960 |
0.0038 | 36.0 | 648 | 0.3912 | 0.8958 | 0.8960 |
0.0038 | 37.0 | 666 | 0.3921 | 0.8958 | 0.8960 |
0.0038 | 38.0 | 684 | 0.3929 | 0.8958 | 0.8960 |
0.0037 | 39.0 | 702 | 0.3935 | 0.8958 | 0.8960 |
0.0037 | 40.0 | 720 | 0.3940 | 0.8958 | 0.8960 |
0.0037 | 41.0 | 738 | 0.3951 | 0.8958 | 0.8960 |
0.0036 | 42.0 | 756 | 0.3958 | 0.8958 | 0.8960 |
0.0036 | 43.0 | 774 | 0.3964 | 0.8958 | 0.8960 |
0.0036 | 44.0 | 792 | 0.3973 | 0.8958 | 0.8960 |
0.0036 | 45.0 | 810 | 0.3978 | 0.8958 | 0.8960 |
0.0036 | 46.0 | 828 | 0.3982 | 0.8958 | 0.8960 |
0.0036 | 47.0 | 846 | 0.3985 | 0.8958 | 0.8960 |
0.0036 | 48.0 | 864 | 0.3987 | 0.8958 | 0.8960 |
0.0035 | 49.0 | 882 | 0.3989 | 0.8958 | 0.8960 |
0.0035 | 50.0 | 900 | 0.3989 | 0.8958 | 0.8960 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1