metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- image_folder
metrics:
- accuracy
- f1
model-index:
- name: All-Plants-18-Epochs-Model
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: image_folder
type: image_folder
config: Dataset
split: train
args: Dataset
metrics:
- name: Accuracy
type: accuracy
value: 0.9847645429362881
- name: F1
type: f1
value: 0.984922643975302
All-Plants-18-Epochs-Model
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the image_folder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0888
- Accuracy: 0.9848
- F1: 0.9849
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 18
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.9212 | 1.0 | 407 | 0.3931 | 0.9501 | 0.9579 |
0.2659 | 2.0 | 814 | 0.2176 | 0.9668 | 0.9674 |
0.137 | 3.0 | 1221 | 0.1481 | 0.9723 | 0.9731 |
0.0865 | 4.0 | 1628 | 0.1043 | 0.9834 | 0.9836 |
0.0557 | 5.0 | 2035 | 0.0888 | 0.9848 | 0.9849 |
0.0408 | 6.0 | 2442 | 0.0839 | 0.9848 | 0.9848 |
0.0289 | 7.0 | 2849 | 0.0920 | 0.9848 | 0.9849 |
0.0229 | 8.0 | 3256 | 0.0817 | 0.9834 | 0.9837 |
0.0175 | 9.0 | 3663 | 0.0890 | 0.9820 | 0.9823 |
0.0156 | 10.0 | 4070 | 0.0966 | 0.9820 | 0.9823 |
0.0121 | 11.0 | 4477 | 0.0809 | 0.9834 | 0.9837 |
0.0102 | 12.0 | 4884 | 0.0875 | 0.9820 | 0.9823 |
0.0086 | 13.0 | 5291 | 0.0873 | 0.9820 | 0.9823 |
0.0077 | 14.0 | 5698 | 0.0860 | 0.9820 | 0.9823 |
0.0068 | 15.0 | 6105 | 0.0876 | 0.9820 | 0.9823 |
0.0062 | 16.0 | 6512 | 0.0896 | 0.9820 | 0.9823 |
0.0059 | 17.0 | 6919 | 0.0890 | 0.9820 | 0.9823 |
0.0056 | 18.0 | 7326 | 0.0894 | 0.9820 | 0.9823 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.14.1