File size: 2,462 Bytes
3ba49f9
f9fa549
 
3ba49f9
 
f9fa549
3ba49f9
af1c444
 
f9fa549
3ba49f9
38bf59d
35fb7b6
3ba49f9
 
f9fa549
af1c444
f9fa549
35fb7b6
f9fa549
 
 
 
 
35fb7b6
af1c444
35fb7b6
 
af1c444
35fb7b6
3ba49f9
 
 
 
 
 
 
f9fa549
 
e23784b
 
 
e762b30
 
f9fa549
3ba49f9
 
 
44ac790
 
 
3ba49f9
 
 
91f33dc
 
ce83ed1
 
 
 
 
 
 
91f33dc
 
3ba49f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9fa549
3ba49f9
 
 
 
f9fa549
3ba49f9
f9fa549
3ba49f9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
language:
- ba
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- mozilla-foundation/common_voice_7_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
base_model: facebook/wav2vec2-xls-r-300m
model-index:
- name: wav2vec2-large-xls-r-300m-bashkir-cv7_opt
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Common Voice 7
      type: mozilla-foundation/common_voice_7_0
      args: ba
    metrics:
    - type: wer
      value: 0.04440795062008041
      name: Test WER
    - type: cer
      value: 0.010491234992390509
      name: Test CER
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-bashkir-cv7_opt

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - BA dataset.
It achieves the following results on the evaluation set:
- Training Loss: 0.268400
- Validation Loss: 0.088252
- WER without LM: 0.085588
- WER with LM: 0.04440795062008041
- CER with LM: 0.010491234992390509


## Model description

Trained with this [jupiter notebook](https://drive.google.com/file/d/1KohDXZtKBWXVPZYlsLtqfxJGBzKmTtSh/view?usp=sharing)



## Intended uses & limitations

In order to reduce the number of characters, the following letters have been replaced or removed:

- 'я' -> 'йа'
- 'ю' -> 'йу'
- 'ё' -> 'йо'
- 'е' -> 'йэ' for first letter
- 'е' -> 'э' for other cases
- 'ъ' -> deleted
- 'ь' -> deleted

Therefore, in order to get the correct text, you need to do the reverse transformation and use the language model.

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 50
- mixed_precision_training: Native AMP

### Framework versions

- Transformers 4.16.1
- Pytorch 1.10.0+cu113
- Datasets 1.18.2
- Tokenizers 0.10.3