File size: 7,305 Bytes
4717aa4 50e2534 4717aa4 50e2534 4717aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
from dataclasses import dataclass
from pathlib import Path
from typing import Optional
import numpy as np
import pandas as pd
import timm
import torch
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import HfHubHTTPError
from PIL import Image
from simple_parsing import field, parse_known_args
from timm.data import create_transform, resolve_data_config
from torch import Tensor, nn
from torch.nn import functional as F
import os
import time
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
from PIL import Image, UnidentifiedImageError
from pathlib import Path
from tqdm import tqdm
@dataclass
class ScriptOptions:
image_folder: Path = "/workspace/ds/reddit"
model: str = field(default="vit")
gen_threshold: float = field(default=0.7)
char_threshold: float = field(default=0.6)
dream_model = AutoModelForCausalLM.from_pretrained(
"moondream/moondream-2b-2025-04-14-4bit",
trust_remote_code=True,
device_map={"": "cuda"}
)
dream_model.model.compile()
torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
new_path = '/workspace/wdv3-timm'
os.chdir(new_path)
print(os.getcwd())
MODEL_REPO_MAP = {
"vit": "SmilingWolf/wd-vit-tagger-v3",
"swinv2": "SmilingWolf/wd-swinv2-tagger-v3",
"convnext": "SmilingWolf/wd-convnext-tagger-v3",
}
def pil_ensure_rgb(image: Image.Image) -> Image.Image:
if image.mode not in ["RGB", "RGBA"]:
image = image.convert("RGBA") if "transparency" in image.info else image.convert("RGB")
if image.mode == "RGBA":
canvas = Image.new("RGBA", image.size, (255, 255, 255))
canvas.alpha_composite(image)
image = canvas.convert("RGB")
return image
def pil_pad_square(image: Image.Image) -> Image.Image:
w, h = image.size
px = max(image.size)
canvas = Image.new("RGB", (px, px), (255, 255, 255))
canvas.paste(image, ((px - w) // 2, (px - h) // 2))
return canvas
@dataclass
class LabelData:
names: list[str]
rating: list[np.int64]
general: list[np.int64]
character: list[np.int64]
def load_labels_hf(
repo_id: str,
revision: Optional[str] = None,
token: Optional[str] = None,
) -> LabelData:
try:
csv_path = hf_hub_download(
repo_id=repo_id, filename="selected_tags.csv", revision=revision, token=token
)
csv_path = Path(csv_path).resolve()
except HfHubHTTPError as e:
raise FileNotFoundError(f"selected_tags.csv failed to download from {repo_id}") from e
df: pd.DataFrame = pd.read_csv(csv_path, usecols=["name", "category"])
tag_data = LabelData(
names=df["name"].tolist(),
rating=list(np.where(df["category"] == 9)[0]),
general=list(np.where(df["category"] == 0)[0]),
character=list(np.where(df["category"] == 4)[0]),
)
return tag_data
def get_tags(
probs: Tensor,
labels: LabelData,
gen_threshold: float,
char_threshold: float,
):
probs = list(zip(labels.names, probs.numpy()))
rating_labels = dict([probs[i] for i in labels.rating])
rating_labels = dict(sorted(rating_labels.items(), key=lambda item: item[1], reverse=True))
gen_labels = [probs[i] for i in labels.general]
gen_labels = dict([x for x in gen_labels if x[1] > gen_threshold])
gen_labels = dict(sorted(gen_labels.items(), key=lambda item: item[1], reverse=True))
char_labels = [probs[i] for i in labels.character]
char_labels = dict([x for x in char_labels if x[1] > char_threshold])
char_labels = dict(sorted(char_labels.items(), key=lambda item: item[1], reverse=True))
combined_names = [x for x in gen_labels]
combined_names.extend([x for x in char_labels])
caption = ", ".join(combined_names)
taglist = caption.replace("_", " ").replace("(", "\(").replace(")", "\)")
caption = caption.replace("_", " ")
caption += ", rating_" + next(iter(sorted(rating_labels, key=rating_labels.get, reverse=True)), '')
return caption, taglist, rating_labels, char_labels, gen_labels
def get_all_images(folder):
count = 0
for path in folder.rglob('*'):
if path.suffix.lower() in ('.jpeg', '.jpg', '.png'):
count += 1
yield path
def main(opts: ScriptOptions):
repo_id = MODEL_REPO_MAP.get(opts.model)
image_folder = Path(opts.image_folder).resolve()
if not image_folder.is_dir():
raise NotADirectoryError(f"Image folder not found: {image_folder}")
print(f"Loading model '{opts.model}' from '{repo_id}'...")
model: nn.Module = timm.create_model("hf-hub:" + repo_id).eval()
state_dict = timm.models.load_state_dict_from_hf(repo_id)
model.load_state_dict(state_dict)
print("Loading tag list...")
labels: LabelData = load_labels_hf(repo_id=repo_id)
print("Creating data transform...")
transform = create_transform(**resolve_data_config(model.pretrained_cfg, model=model))
image_paths = list(get_all_images(image_folder))
num_images = len(image_paths)
for image_path in tqdm(image_paths, desc="Processing images"):
txt_file = image_path.with_suffix('.txt')
if txt_file.exists():
continue
try:
img_input: Image.Image = Image.open(image_path)
img_input = pil_ensure_rgb(img_input)
img_input = pil_pad_square(img_input)
inputs: Tensor = transform(img_input).unsqueeze(0)
inputs = inputs[:, [2, 1, 0]]
with torch.inference_mode():
mdream_capt = dream_model.caption(img_input, length="normal")["caption"]
mdream_capt = mdream_capt.replace("The image depicts ", "").replace("The image presents ", "").replace("The image features ", "").replace("The image portrays ", "").replace("The image is ", "").strip()
if torch_device.type != "cpu":
model = model.to(torch_device)
inputs = inputs.to(torch_device)
outputs = model.forward(inputs)
outputs = F.sigmoid(outputs)
if torch_device.type != "cpu":
inputs = inputs.to("cpu")
outputs = outputs.to("cpu")
model = model.to("cpu")
caption, taglist, ratings, character, general = get_tags(
probs=outputs.squeeze(0),
labels=labels,
gen_threshold=opts.gen_threshold,
char_threshold=opts.char_threshold,
)
clean_name = image_path.stem
clean_name = ' '.join(word for word in clean_name.split() if not word.startswith(('1', '2', '3', '4', '5', '6', '7', '8', '9', '0')))
tags_filename = str(image_path.with_suffix('.tag'))
text_filename = str(image_path.with_suffix('.txt'))
with open(tags_filename, 'w') as file_tag:
file_tag.write(f"{caption}")
with open(text_filename, 'w') as file_txt:
file_txt.write(f"{mdream_capt} {caption}. {clean_name}")
except (OSError, UnidentifiedImageError) as e:
print(f"Error processing {image_path}: {str(e)}")
continue
print("Done!")
if __name__ == "__main__":
opts, _ = parse_known_args(ScriptOptions)
main(opts)
|