File size: 7,305 Bytes
4717aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50e2534
4717aa4
 
 
 
 
 
 
50e2534
4717aa4
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from dataclasses import dataclass
from pathlib import Path
from typing import Optional

import numpy as np
import pandas as pd
import timm
import torch
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import HfHubHTTPError
from PIL import Image
from simple_parsing import field, parse_known_args
from timm.data import create_transform, resolve_data_config
from torch import Tensor, nn
from torch.nn import functional as F
import os
import time
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
from PIL import Image, UnidentifiedImageError
from pathlib import Path
from tqdm import tqdm

@dataclass
class ScriptOptions:
    image_folder: Path = "/workspace/ds/reddit"
    model: str = field(default="vit")
    gen_threshold: float = field(default=0.7)
    char_threshold: float = field(default=0.6)

dream_model = AutoModelForCausalLM.from_pretrained(
    "moondream/moondream-2b-2025-04-14-4bit",
    trust_remote_code=True,
    device_map={"": "cuda"}
)
dream_model.model.compile()

torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

new_path = '/workspace/wdv3-timm'
os.chdir(new_path)
print(os.getcwd())

MODEL_REPO_MAP = {
    "vit": "SmilingWolf/wd-vit-tagger-v3",
    "swinv2": "SmilingWolf/wd-swinv2-tagger-v3",
    "convnext": "SmilingWolf/wd-convnext-tagger-v3",
}

def pil_ensure_rgb(image: Image.Image) -> Image.Image:
    if image.mode not in ["RGB", "RGBA"]:
        image = image.convert("RGBA") if "transparency" in image.info else image.convert("RGB")
    if image.mode == "RGBA":
        canvas = Image.new("RGBA", image.size, (255, 255, 255))
        canvas.alpha_composite(image)
        image = canvas.convert("RGB")
    return image

def pil_pad_square(image: Image.Image) -> Image.Image:
    w, h = image.size
    px = max(image.size)
    canvas = Image.new("RGB", (px, px), (255, 255, 255))
    canvas.paste(image, ((px - w) // 2, (px - h) // 2))
    return canvas

@dataclass
class LabelData:
    names: list[str]
    rating: list[np.int64]
    general: list[np.int64]
    character: list[np.int64]

def load_labels_hf(
    repo_id: str,
    revision: Optional[str] = None,
    token: Optional[str] = None,
) -> LabelData:
    try:
        csv_path = hf_hub_download(
            repo_id=repo_id, filename="selected_tags.csv", revision=revision, token=token
        )
        csv_path = Path(csv_path).resolve()
    except HfHubHTTPError as e:
        raise FileNotFoundError(f"selected_tags.csv failed to download from {repo_id}") from e

    df: pd.DataFrame = pd.read_csv(csv_path, usecols=["name", "category"])
    tag_data = LabelData(
        names=df["name"].tolist(),
        rating=list(np.where(df["category"] == 9)[0]),
        general=list(np.where(df["category"] == 0)[0]),
        character=list(np.where(df["category"] == 4)[0]),
    )

    return tag_data

def get_tags(
    probs: Tensor,
    labels: LabelData,
    gen_threshold: float,
    char_threshold: float,
):
    probs = list(zip(labels.names, probs.numpy()))

    rating_labels = dict([probs[i] for i in labels.rating])
    rating_labels = dict(sorted(rating_labels.items(), key=lambda item: item[1], reverse=True))

    gen_labels = [probs[i] for i in labels.general]
    gen_labels = dict([x for x in gen_labels if x[1] > gen_threshold])
    gen_labels = dict(sorted(gen_labels.items(), key=lambda item: item[1], reverse=True))

    char_labels = [probs[i] for i in labels.character]
    char_labels = dict([x for x in char_labels if x[1] > char_threshold])
    char_labels = dict(sorted(char_labels.items(), key=lambda item: item[1], reverse=True))

    combined_names = [x for x in gen_labels]
    combined_names.extend([x for x in char_labels])

    caption = ", ".join(combined_names)

    taglist = caption.replace("_", " ").replace("(", "\(").replace(")", "\)")

    caption = caption.replace("_", " ")
    caption += ", rating_" + next(iter(sorted(rating_labels, key=rating_labels.get, reverse=True)), '')

    return caption, taglist, rating_labels, char_labels, gen_labels

def get_all_images(folder):
    count = 0

    for path in folder.rglob('*'):
        if path.suffix.lower() in ('.jpeg', '.jpg', '.png'):
            count += 1
            yield path

def main(opts: ScriptOptions):
    repo_id = MODEL_REPO_MAP.get(opts.model)
    image_folder = Path(opts.image_folder).resolve()
    if not image_folder.is_dir():
        raise NotADirectoryError(f"Image folder not found: {image_folder}")

    print(f"Loading model '{opts.model}' from '{repo_id}'...")
    model: nn.Module = timm.create_model("hf-hub:" + repo_id).eval()
    state_dict = timm.models.load_state_dict_from_hf(repo_id)
    model.load_state_dict(state_dict)

    print("Loading tag list...")
    labels: LabelData = load_labels_hf(repo_id=repo_id)

    print("Creating data transform...")
    transform = create_transform(**resolve_data_config(model.pretrained_cfg, model=model))

    image_paths = list(get_all_images(image_folder))
    num_images = len(image_paths)

    for image_path in tqdm(image_paths, desc="Processing images"):
        txt_file = image_path.with_suffix('.txt')
        if txt_file.exists():
            continue
        try:
            img_input: Image.Image = Image.open(image_path)
            img_input = pil_ensure_rgb(img_input)
            img_input = pil_pad_square(img_input)
            inputs: Tensor = transform(img_input).unsqueeze(0)
            inputs = inputs[:, [2, 1, 0]]

            with torch.inference_mode():
                mdream_capt = dream_model.caption(img_input, length="normal")["caption"]
                mdream_capt = mdream_capt.replace("The image depicts ", "").replace("The image presents ", "").replace("The image features ", "").replace("The image portrays ", "").replace("The image is ", "").strip()

                if torch_device.type != "cpu":
                    model = model.to(torch_device)
                    inputs = inputs.to(torch_device)
                outputs = model.forward(inputs)
                outputs = F.sigmoid(outputs)
                if torch_device.type != "cpu":
                    inputs = inputs.to("cpu")
                    outputs = outputs.to("cpu")
                    model = model.to("cpu")

            caption, taglist, ratings, character, general = get_tags(
                probs=outputs.squeeze(0),
                labels=labels,
                gen_threshold=opts.gen_threshold,
                char_threshold=opts.char_threshold,
            )

            clean_name = image_path.stem
            clean_name = ' '.join(word for word in clean_name.split() if not word.startswith(('1', '2', '3', '4', '5', '6', '7', '8', '9', '0')))

            tags_filename = str(image_path.with_suffix('.tag'))
            text_filename = str(image_path.with_suffix('.txt'))

            with open(tags_filename, 'w') as file_tag:
                file_tag.write(f"{caption}")
            with open(text_filename, 'w') as file_txt:
                file_txt.write(f"{mdream_capt} {caption}. {clean_name}")

        except (OSError, UnidentifiedImageError) as e:
            print(f"Error processing {image_path}: {str(e)}")
            continue

    print("Done!")

if __name__ == "__main__":
    opts, _ = parse_known_args(ScriptOptions)
    main(opts)