|
--- |
|
tags: |
|
- Code-Generation |
|
- autotrain |
|
- text-generation |
|
- Llama2 |
|
- Pytorch |
|
- PEFT |
|
- QLoRA |
|
- code |
|
- coding |
|
pipeline_tag: text-generation |
|
widget: |
|
- text: 'Write a program that add five numbers' |
|
- text: 'Write a python code for reading multiple images' |
|
- text: 'Write a python code for the name Ahmed to be in a reversed order' |
|
--- |
|
|
|
# LlaMa2-CodeGen |
|
This model is [**LlaMa2-7b**](https://huggingface.co/meta-llama/Llama-2-7b) which is fine-tuned on the [**CodeSearchNet dataset**](https://github.com/github/CodeSearchNet) by using the method [**QLoRA**](https://github.com/artidoro/qlora) with [PEFT](https://github.com/huggingface/peft) library. |
|
|
|
# Model Trained on Google Colab Pro Using AutoTrain, PEFT and QLoRA |
|
|
|
|
|
# You can load the model on google colab. |
|
|
|
### Example |
|
```py |
|
|
|
|
|
import torch |
|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig |
|
|
|
peft_model_id = "AhmedSSoliman/Llama2-CodeGen-PEFT-QLoRA" |
|
config = PeftConfig.from_pretrained(peft_model_id) |
|
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, trust_remote_code=True, return_dict=True, load_in_4bit=True, device_map='auto') |
|
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) |
|
|
|
# Load the Lora model |
|
model = PeftModel.from_pretrained(model, peft_model_id) |
|
|
|
|
|
|
|
def create_prompt(instruction): |
|
system = "You are a coding assistant that will help the user to resolve the following instruction:" |
|
instruction = "\n### Input: " + instruction |
|
return system + "\n" + instruction + "\n\n" + "### Response:" + "\n" |
|
|
|
def generate( |
|
instruction, |
|
max_new_tokens=128, |
|
temperature=0.1, |
|
top_p=0.75, |
|
top_k=40, |
|
num_beams=4, |
|
**kwargs, |
|
): |
|
prompt = create_prompt(instruction) |
|
print(prompt) |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
input_ids = inputs["input_ids"].to("cuda") |
|
attention_mask = inputs["attention_mask"].to("cuda") |
|
generation_config = GenerationConfig( |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
num_beams=num_beams, |
|
**kwargs, |
|
) |
|
with torch.no_grad(): |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=max_new_tokens, |
|
early_stopping=True |
|
) |
|
s = generation_output.sequences[0] |
|
output = tokenizer.decode(s) |
|
return output.split("### Response:")[1].lstrip("\n") |
|
|
|
|
|
instruction = """ |
|
Write a python code for the name Ahmed to be in a reversed order |
|
""" |
|
print(generate(instruction)) |
|
``` |