File size: 18,183 Bytes
c70396e f9e5c52 ee67b3c 056145f e40d0bf ee67b3c 3946810 54500ea 5e7390c 54500ea 3946810 e3cee23 027905a 9b1bf94 86eab5b e18488b 9d1c06b 22d77c4 895baab 22d77c4 bcf6d51 22d77c4 9d1c06b c70396e 9d1c06b c70396e c92415c c70396e 9914508 c70396e 8a37338 71ae00f 8a37338 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
# Visual Semantic with BERT-CNN
This model can be used to assign an object-to-caption semantic relatedness score, which is valuable for (1) caption diverse re-ranking (this work),
and (2) (as an application)
generating soft labels for filtering out the related/non-related image-to-post when scraping images from the internet (e.g. Instagram).
To take advantage of the overlapping between the visual context and the caption, and to extract global information from each visual (i.e., object, scene, etc) we use BERT as an embedding layer followed by a shallow CNN (tri-gram kernel) (Kim, 2014).
Please refer to [Github](https://github.com/ahmedssabir/Visual-Semantic-Relatedness-Dataset-for-Image-Captioning) for more information.
[![arXiv](https://img.shields.io/badge/arXiv-2301.08784-b31b1b.svg)](https://arxiv.org/abs/2301.08784) [![Website shields.io](https://img.shields.io/website-up-down-green-red/http/shields.io.svg)](https://ahmed.jp/project_page/Dataset_2022/index.html)
For datasets that are less than 100K please have look at our [shallow model](https://github.com/ahmedssabir/Semantic-Relatedness-Based-Reranker-for-Text-Spotting)
The model is trained with a strict filter of 0.4 similarity distance thresholds between the object and its related caption.
For a quick start please have a look at this [demo](https://github.com/ahmedssabir/Textual-Visual-Semantic-Dataset/blob/main/BERT_CNN_Visual_re_ranker_demo.ipynb)
For the [dataset](https://huggingface.co/datasets/AhmedSSabir/Textual-Image-Caption-Dataset)
## # Result with SoTA pre-trained image Captioning BLIP
Comparison result with BLIP (125M pre-trained images) [Table 7 COCO Caption Karpathy testset](https://arxiv.org/pdf/2201.12086.pdf).
For the VilBERT model (3.5M pre-trained images) please refer to the paper.
## Accuarcy
| Model | B-1 | B-2 | B-3 | B-4 | M | R | C | S |BERTscore |
|----------------------------------|---------|-------|--------|-------|--------|--------|-------|--------|---------|
| BLIP Beam Search b=3 | .797 | .649 | **.514** | **.403** | **.311** | **.606** |**1.365** |**.243** | **.9484** |
| + BERT-CNN $th=0$ | .798 | .646 | .506 | .392 | .305 | .598 | 1.339 | .238 | .9473 |
| + BERT-CNN $th\geq0.2$ | .798 | .647 | .507 | .393 | .306 | .600 | 1.342 | .238 | .9473 |
| + BERT-CNN $th\geq0.3$ | .802 | .651 | .511 | .397 | .307 | .601 | 1.349 | .238 | .9479 |
| + BERT-CNN $th\geq0.4$ | **.806** | **.654** | .513 | .397 | .303 | .599 | 1.343 | .235 | .9476 |
## Diversity
| Model | Uniq | Voc | mBLeu-1↓ | Div-1 |Div-2 | SBERT-sts|
|----------------------------------|---------|-------|----------|-------|-------|----------|
| BLIP Beam Search b=3 | **8.60** | 1406 | .461 | .68 | .80 | .8058 |
| + BERT-CNN $th=0$ | 8.49 | **1532** | .457 | .68 | .80 | .8046 |
| + BERT-CNN $th\geq0.2$ | 8.48 | 1486 | .458 | .68 | .80 | .8052 |
| + BERT-CNN $th\geq0.3$ | 8.41 | 1448 | .458 | .68 | .80 | **.8060** |
| + BERT-CNN $th\geq0.4$ | 8.30 | 1448 | **.455** | .68 | .80 | .8053 |
|human | 9.14 | 3425 | .375 | .74 | .84 | NA |
```
conda create -n BERT_visual python=3.6 anaconda
conda activate BERT_visual
pip install tensorflow==1.15.0
pip install --upgrade tensorflow_hub==0.7.0
```
```
git clone https://github.com/gaphex/bert_experimental/
```
```python
import tensorflow as tf
import numpy as np
import pandas as pd
import sys
from sklearn.model_selection import train_test_split
sys.path.insert(0, "bert_experimental")
from bert_experimental.finetuning.text_preprocessing import build_preprocessor
from bert_experimental.finetuning.graph_ops import load_graph
df = pd.read_csv("test.tsv", sep='\t')
texts = []
delimiter = " ||| "
for vis, cap in zip(df.visual.tolist(), df.caption.tolist()):
texts.append(delimiter.join((str(vis), str(cap))))
texts = np.array(texts)
trX, tsX = train_test_split(texts, shuffle=False, test_size=0.01)
restored_graph = load_graph("frozen_graph.pb")
graph_ops = restored_graph.get_operations()
input_op, output_op = graph_ops[0].name, graph_ops[-1].name
print(input_op, output_op)
x = restored_graph.get_tensor_by_name(input_op + ':0')
y = restored_graph.get_tensor_by_name(output_op + ':0')
preprocessor = build_preprocessor("vocab.txt", 64)
py_func = tf.numpy_function(preprocessor, [x], [tf.int32, tf.int32, tf.int32], name='preprocessor')
##predictions
sess = tf.Session(graph=restored_graph)
print(trX[:4])
y = tf.print(y, summarize=-1)
y_out = sess.run(y, feed_dict={
x: trX[:4].reshape((-1,1))
})
print(y_out)
````
For training and inference
```
python BERT_CNN.py --train train_0.4.tsv --epochs 5
```
```python
# -*- coding: utf-8 -*-
#!/bin/env python
import sys
import argparse
import re
import os
import sys
import json
import logging
import numpy as np
import pandas as pd
import tensorflow as tf
import tensorflow_hub as hub
from BertLayer import BertLayer
from BertLayer import build_preprocessor
from freeze_keras_model import freeze_keras_model
from data_pre import *
from tensorflow import keras
from tensorflow.keras.callbacks import ReduceLROnPlateau, ModelCheckpoint
from sklearn.model_selection import train_test_split
if not 'bert_repo' in sys.path:
sys.path.insert(0, 'bert_repo')
from modeling import BertModel, BertConfig
from tokenization import FullTokenizer, convert_to_unicode
from extract_features import InputExample, convert_examples_to_features
# get TF logger
log = logging.getLogger('tensorflow')
log.handlers = []
parser=argparse.ArgumentParser()
parser.add_argument('--train', default='train.tsv', help='beam serach', type=str,required=False)
parser.add_argument('--num_bert_layer', default='12', help='truned layers', type=int,required=False)
parser.add_argument('--batch_size', default='128', help='truned layers', type=int,required=False)
parser.add_argument('--epochs', default='5', help='', type=int,required=False)
parser.add_argument('--seq_len', default='64', help='', type=int,required=False)
parser.add_argument('--CNN_kernel_size', default='3', help='', type=int,required=False)
parser.add_argument('--CNN_filters', default='32', help='', type=int,required=False)
args = parser.parse_args()
# Downlaod the pre-trained model
#!wget https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
#!unzip uncased_L-12_H-768_A-12.zip
# tf.Module
def build_module_fn(config_path, vocab_path, do_lower_case=True):
def bert_module_fn(is_training):
"""Spec function for a token embedding module."""
input_ids = tf.placeholder(shape=[None, None], dtype=tf.int32, name="input_ids")
input_mask = tf.placeholder(shape=[None, None], dtype=tf.int32, name="input_mask")
token_type = tf.placeholder(shape=[None, None], dtype=tf.int32, name="segment_ids")
config = BertConfig.from_json_file(config_path)
model = BertModel(config=config, is_training=is_training,
input_ids=input_ids, input_mask=input_mask, token_type_ids=token_type)
seq_output = model.all_encoder_layers[-1]
pool_output = model.get_pooled_output()
config_file = tf.constant(value=config_path, dtype=tf.string, name="config_file")
vocab_file = tf.constant(value=vocab_path, dtype=tf.string, name="vocab_file")
lower_case = tf.constant(do_lower_case)
tf.add_to_collection(tf.GraphKeys.ASSET_FILEPATHS, config_file)
tf.add_to_collection(tf.GraphKeys.ASSET_FILEPATHS, vocab_file)
input_map = {"input_ids": input_ids,
"input_mask": input_mask,
"segment_ids": token_type}
output_map = {"pooled_output": pool_output,
"sequence_output": seq_output}
output_info_map = {"vocab_file": vocab_file,
"do_lower_case": lower_case}
hub.add_signature(name="tokens", inputs=input_map, outputs=output_map)
hub.add_signature(name="tokenization_info", inputs={}, outputs=output_info_map)
return bert_module_fn
#MODEL_DIR = "uncased_L-12_H-768_A-12"
config_path = "/{}/bert_config.json".format(MODEL_DIR)
vocab_path = "/{}/vocab.txt".format(MODEL_DIR)
tags_and_args = []
for is_training in (True, False):
tags = set()
if is_training:
tags.add("train")
tags_and_args.append((tags, dict(is_training=is_training)))
module_fn = build_module_fn(config_path, vocab_path)
spec = hub.create_module_spec(module_fn, tags_and_args=tags_and_args)
spec.export("bert-module",
checkpoint_path="/{}/bert_model.ckpt".format(MODEL_DIR))
class BertLayer(tf.keras.layers.Layer):
def __init__(self, bert_path, seq_len=64, n_tune_layers=3,
pooling="cls", do_preprocessing=True, verbose=False,
tune_embeddings=False, trainable=True, **kwargs):
self.trainable = trainable
self.n_tune_layers = n_tune_layers
self.tune_embeddings = tune_embeddings
self.do_preprocessing = do_preprocessing
self.verbose = verbose
self.seq_len = seq_len
self.pooling = pooling
self.bert_path = bert_path
self.var_per_encoder = 16
if self.pooling not in ["cls", "mean", None]:
raise NameError(
f"Undefined pooling type (must be either 'cls', 'mean', or None, but is {self.pooling}"
)
super(BertLayer, self).__init__(**kwargs)
def build(self, input_shape):
self.bert = hub.Module(self.build_abspath(self.bert_path),
trainable=self.trainable, name=f"{self.name}_module")
trainable_layers = []
if self.tune_embeddings:
trainable_layers.append("embeddings")
if self.pooling == "cls":
trainable_layers.append("pooler")
if self.n_tune_layers > 0:
encoder_var_names = [var.name for var in self.bert.variables if 'encoder' in var.name]
n_encoder_layers = int(len(encoder_var_names) / self.var_per_encoder)
for i in range(self.n_tune_layers):
trainable_layers.append(f"encoder/layer_{str(n_encoder_layers - 1 - i)}/")
# Add module variables to layer's trainable weights
for var in self.bert.variables:
if any([l in var.name for l in trainable_layers]):
self._trainable_weights.append(var)
else:
self._non_trainable_weights.append(var)
if self.verbose:
print("*** TRAINABLE VARS *** ")
for var in self._trainable_weights:
print(var)
self.build_preprocessor()
self.initialize_module()
super(BertLayer, self).build(input_shape)
def build_abspath(self, path):
if path.startswith("https://") or path.startswith("gs://"):
return path
else:
return os.path.abspath(path)
def build_preprocessor(self):
sess = tf.keras.backend.get_session()
tokenization_info = self.bert(signature="tokenization_info", as_dict=True)
vocab_file, do_lower_case = sess.run([tokenization_info["vocab_file"],
tokenization_info["do_lower_case"]])
self.preprocessor = build_preprocessor(vocab_file, self.seq_len, do_lower_case)
def initialize_module(self):
sess = tf.keras.backend.get_session()
vars_initialized = sess.run([tf.is_variable_initialized(var)
for var in self.bert.variables])
uninitialized = []
for var, is_initialized in zip(self.bert.variables, vars_initialized):
if not is_initialized:
uninitialized.append(var)
if len(uninitialized):
sess.run(tf.variables_initializer(uninitialized))
def call(self, input):
if self.do_preprocessing:
input = tf.numpy_function(self.preprocessor,
[input], [tf.int32, tf.int32, tf.int32],
name='preprocessor')
for feature in input:
feature.set_shape((None, self.seq_len))
input_ids, input_mask, segment_ids = input
bert_inputs = dict(
input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids
)
output = self.bert(inputs=bert_inputs, signature="tokens", as_dict=True)
if self.pooling == "cls":
pooled = output["pooled_output"]
else:
result = output["sequence_output"]
input_mask = tf.cast(input_mask, tf.float32)
mul_mask = lambda x, m: x * tf.expand_dims(m, axis=-1)
masked_reduce_mean = lambda x, m: tf.reduce_sum(mul_mask(x, m), axis=1) / (
tf.reduce_sum(m, axis=1, keepdims=True) + 1e-10)
if self.pooling == "mean":
pooled = masked_reduce_mean(result, input_mask)
else:
pooled = mul_mask(result, input_mask)
return pooled
def get_config(self):
config_dict = {
"bert_path": self.bert_path,
"seq_len": self.seq_len,
"pooling": self.pooling,
"n_tune_layers": self.n_tune_layers,
"tune_embeddings": self.tune_embeddings,
"do_preprocessing": self.do_preprocessing,
"verbose": self.verbose
}
super(BertLayer, self).get_config()
return config_dict
# read the train data
df = pd.read_csv(args.train, sep='\t')
labels = df.is_related.values
texts = []
delimiter = " ||| "
for vis, cap in zip(df.visual.tolist(), df.caption.tolist()):
texts.append(delimiter.join((str(vis), str(cap))))
texts = np.array(texts)
trX, tsX, trY, tsY = train_test_split(texts, labels, shuffle=True, test_size=0.2)
# Buliding the model
embedding_size = 768
# input
inp = tf.keras.Input(shape=(1,), dtype=tf.string)
# BERT encoder
# For CLS with linear layer
#encoder = BertLayer(bert_path="./bert-module/", seq_len=48, tune_embeddings=False,
# pooling='cls', n_tune_layers=3, verbose=False)
# CNN Layers
encoder = BertLayer(bert_path="./bert-module/", seq_len=args.seq_len, tune_embeddings=False, pooling=None, n_tune_layers=args.num_bert_layer, verbose=False)
cnn_out = tf.keras.layers.Conv1D(args.CNN_filters, args.CNN_kernel_size, padding='VALID', activation=tf.nn.relu)(encoder(inp))
pool = tf.keras.layers.MaxPooling1D(pool_size=2)(cnn_out)
flat = tf.keras.layers.Flatten()(pool)
pred = tf.keras.layers.Dense(1, activation="sigmoid")(flat)
model = tf.keras.models.Model(inputs=[inp], outputs=[pred])
model.summary()
model.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=1e-5, ),
loss="binary_crossentropy",
metrics=["accuracy"])
# fit the data
import logging
logging.getLogger("tensorflow").setLevel(logging.WARNING)
saver = keras.callbacks.ModelCheckpoint("bert_CNN_tuned.hdf5")
model.fit(trX, trY, validation_data=[tsX, tsY], batch_size=args.batch_size, epochs=args.epochs, callbacks=[saver])
#save the model
model.predict(trX[:10])
import json
json.dump(model.to_json(), open("model.json", "w"))
model = tf.keras.models.model_from_json(json.load(open("model.json")),
custom_objects={"BertLayer": BertLayer})
model.load_weights("bert_CNN_tuned.hdf5")
model.predict(trX[:10])
# For fast inference and less RAM usesage as post-processing we need to "freezing" the model.
from tensorflow.python.framework.graph_util import convert_variables_to_constants
from tensorflow.python.tools.optimize_for_inference_lib import optimize_for_inference
def freeze_keras_model(model, export_path=None, clear_devices=True):
sess = tf.keras.backend.get_session()
graph = sess.graph
with graph.as_default():
input_tensors = model.inputs
output_tensors = model.outputs
dtypes = [t.dtype.as_datatype_enum for t in input_tensors]
input_ops = [t.name.rsplit(":", maxsplit=1)[0] for t in input_tensors]
output_ops = [t.name.rsplit(":", maxsplit=1)[0] for t in output_tensors]
tmp_g = graph.as_graph_def()
if clear_devices:
for node in tmp_g.node:
node.device = ""
tmp_g = optimize_for_inference(
tmp_g, input_ops, output_ops, dtypes, False)
tmp_g = convert_variables_to_constants(sess, tmp_g, output_ops)
if export_path is not None:
with tf.gfile.GFile(export_path, "wb") as f:
f.write(tmp_g.SerializeToString())
return tmp_g
# freeze and save the model
frozen_graph = freeze_keras_model(model, export_path="frozen_graph.pb")
# inference
#!git clone https://github.com/gaphex/bert_experimental/
import tensorflow as tf
import numpy as np
import sys
sys.path.insert(0, "bert_experimental")
from bert_experimental.finetuning.text_preprocessing import build_preprocessor
from bert_experimental.finetuning.graph_ops import load_graph
restored_graph = load_graph("frozen_graph.pb")
graph_ops = restored_graph.get_operations()
input_op, output_op = graph_ops[0].name, graph_ops[-1].name
print(input_op, output_op)
x = restored_graph.get_tensor_by_name(input_op + ':0')
y = restored_graph.get_tensor_by_name(output_op + ':0')
preprocessor = build_preprocessor("vocab.txt", 64)
py_func = tf.numpy_function(preprocessor, [x], [tf.int32, tf.int32, tf.int32], name='preprocessor')
py_func = tf.numpy_function(preprocessor, [x], [tf.int32, tf.int32, tf.int32])
# predictions
sess = tf.Session(graph=restored_graph)
trX[:10]
y_out = sess.run(y, feed_dict={
x: trX[:10].reshape((-1,1))
})
print(y_out)
``` |