File size: 3,789 Bytes
f16e9c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: roberta-base-topic_classification_simple
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-topic_classification_simple
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3253
- Accuracy: {'accuracy': 0.8445839874411303}
- F1: {'f1': 0.8435559601445874}
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:--------------------------:|
| No log | 1.0 | 353 | 0.6772 | {'accuracy': 0.7905359946176272} | {'f1': 0.7881026657042776} |
| 0.8304 | 2.0 | 706 | 0.6028 | {'accuracy': 0.8187934514465127} | {'f1': 0.8207294945978928} |
| 0.3839 | 3.0 | 1059 | 0.5942 | {'accuracy': 0.8344920385736713} | {'f1': 0.8333019225828988} |
| 0.3839 | 4.0 | 1412 | 0.6904 | {'accuracy': 0.8340435075128952} | {'f1': 0.8330992428789376} |
| 0.2015 | 5.0 | 1765 | 0.8314 | {'accuracy': 0.8264184794797039} | {'f1': 0.82429813311833} |
| 0.118 | 6.0 | 2118 | 0.8572 | {'accuracy': 0.8356133662256111} | {'f1': 0.8349736274018552} |
| 0.118 | 7.0 | 2471 | 0.9742 | {'accuracy': 0.8383045525902669} | {'f1': 0.8376600364979794} |
| 0.0804 | 8.0 | 2824 | 1.0628 | {'accuracy': 0.8333707109217313} | {'f1': 0.8313400577604307} |
| 0.0508 | 9.0 | 3177 | 1.0866 | {'accuracy': 0.8333707109217313} | {'f1': 0.832415418717587} |
| 0.0406 | 10.0 | 3530 | 1.1633 | {'accuracy': 0.8432383942588024} | {'f1': 0.8425868379595812} |
| 0.0406 | 11.0 | 3883 | 1.2132 | {'accuracy': 0.8400986768333707} | {'f1': 0.8388873470699977} |
| 0.0245 | 12.0 | 4236 | 1.2799 | {'accuracy': 0.836958959407939} | {'f1': 0.8378019487138132} |
| 0.0139 | 13.0 | 4589 | 1.2379 | {'accuracy': 0.8434626597891904} | {'f1': 0.8429633731503271} |
| 0.0139 | 14.0 | 4942 | 1.2578 | {'accuracy': 0.8445839874411303} | {'f1': 0.8439974594663667} |
| 0.014 | 15.0 | 5295 | 1.3392 | {'accuracy': 0.8407714734245346} | {'f1': 0.8405188286141088} |
| 0.0111 | 16.0 | 5648 | 1.2977 | {'accuracy': 0.8443597219107423} | {'f1': 0.8438293082262649} |
| 0.0099 | 17.0 | 6001 | 1.3405 | {'accuracy': 0.8412200044853106} | {'f1': 0.8400992068548403} |
| 0.0099 | 18.0 | 6354 | 1.3433 | {'accuracy': 0.8405472078941467} | {'f1': 0.839917724407298} |
| 0.0041 | 19.0 | 6707 | 1.3269 | {'accuracy': 0.8445839874411303} | {'f1': 0.8434224071770644} |
| 0.0041 | 20.0 | 7060 | 1.3253 | {'accuracy': 0.8445839874411303} | {'f1': 0.8435559601445874} |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|