File size: 2,010 Bytes
d8adb2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
language:
- ar
license: apache-2.0
base_model: nadsoft/hamsa-v0.1-beta
tags:
- generated_from_trainer
datasets:
- nadsoft/arabic-98
metrics:
- wer
model-index:
- name: hamsa-beta-v0.3Q
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: nadsoft/arabic-98
      type: nadsoft/arabic-98
    metrics:
    - name: Wer
      type: wer
      value: 19.302853050017905
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hamsa-beta-v0.3Q

This model is a fine-tuned version of [nadsoft/hamsa-v0.1-beta](https://huggingface.co/nadsoft/hamsa-v0.1-beta) on the nadsoft/arabic-98 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2362
- Wer Ortho: 21.12
- Wer: 19.3029

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|
| 0.2617        | 0.25  | 1000 | 0.2684          | 22.16     | 18.8134 |
| 0.227         | 0.5   | 2000 | 0.2565          | 18.6971   | 16.7482 |
| 0.2585        | 0.75  | 3000 | 0.2442          | 18.2400   | 16.3304 |
| 0.2632        | 1.0   | 4000 | 0.2362          | 21.12     | 19.3029 |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0