File size: 4,149 Bytes
26dee9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b30ce7b
26dee9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b30ce7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26dee9d
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
license: llama2
library_name: peft
tags:
- generated_from_trainer
base_model: meta-llama/Llama-2-7b-hf
model-index:
- name: hindi-llama
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hindi-llama

This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1632

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 1.5858        | 0.0188 | 1000  | 1.4610          |
| 1.3662        | 0.0375 | 2000  | 1.3469          |
| 1.3174        | 0.0563 | 3000  | 1.3143          |
| 1.3003        | 0.0750 | 4000  | 1.2895          |
| 1.2931        | 0.0938 | 5000  | 1.2762          |
| 1.2786        | 0.1125 | 6000  | 1.2649          |
| 1.2541        | 0.1313 | 7000  | 1.2556          |
| 1.2594        | 0.1500 | 8000  | 1.2481          |
| 1.2523        | 0.1688 | 9000  | 1.2415          |
| 1.244         | 0.1876 | 10000 | 1.2348          |
| 1.2274        | 0.2063 | 11000 | 1.2309          |
| 1.2167        | 0.2251 | 12000 | 1.2257          |
| 1.2359        | 0.2438 | 13000 | 1.2225          |
| 1.2156        | 0.2626 | 14000 | 1.2191          |
| 1.204         | 0.2813 | 15000 | 1.2146          |
| 1.2203        | 0.3001 | 16000 | 1.2109          |
| 1.2016        | 0.3188 | 17000 | 1.2094          |
| 1.2117        | 0.3376 | 18000 | 1.2057          |
| 1.2183        | 0.3563 | 19000 | 1.2038          |
| 1.2108        | 0.3751 | 20000 | 1.2005          |
| 1.2153        | 0.3939 | 21000 | 1.1981          |
| 1.189         | 0.4126 | 22000 | 1.1968          |
| 1.1857        | 0.4314 | 23000 | 1.1947          |
| 1.1688        | 0.4501 | 24000 | 1.1914          |
| 1.2028        | 0.4689 | 25000 | 1.1907          |
| 1.1916        | 0.4876 | 26000 | 1.1893          |
| 1.1797        | 0.5064 | 27000 | 1.1873          |
| 1.1897        | 0.5251 | 28000 | 1.1848          |
| 1.1817        | 0.5439 | 29000 | 1.1837          |
| 1.1837        | 0.5627 | 30000 | 1.1826          |
| 1.1889        | 0.5814 | 31000 | 1.1808          |
| 1.1754        | 0.6002 | 32000 | 1.1798          |
| 1.1868        | 0.6189 | 33000 | 1.1790          |
| 1.1792        | 0.6377 | 34000 | 1.1780          |
| 1.1772        | 0.6564 | 35000 | 1.1766          |
| 1.1763        | 0.6752 | 36000 | 1.1755          |
| 1.1719        | 0.6939 | 37000 | 1.1746          |
| 1.1804        | 0.7127 | 38000 | 1.1724          |
| 1.1763        | 0.7314 | 39000 | 1.1717          |
| 1.1715        | 0.7502 | 40000 | 1.1717          |
| 1.1732        | 0.7690 | 41000 | 1.1701          |
| 1.1808        | 0.7877 | 42000 | 1.1692          |
| 1.1713        | 0.8065 | 43000 | 1.1688          |
| 1.175         | 0.8252 | 44000 | 1.1678          |
| 1.1604        | 0.8440 | 45000 | 1.1668          |
| 1.1619        | 0.8627 | 46000 | 1.1658          |
| 1.1686        | 0.8815 | 47000 | 1.1650          |
| 1.1541        | 0.9002 | 48000 | 1.1647          |
| 1.1776        | 0.9190 | 49000 | 1.1641          |
| 1.1675        | 0.9378 | 50000 | 1.1640          |
| 1.1727        | 0.9565 | 51000 | 1.1636          |
| 1.1566        | 0.9753 | 52000 | 1.1633          |
| 1.1657        | 0.9940 | 53000 | 1.1632          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1