File size: 1,739 Bytes
8727659
1a5a43c
 
 
 
 
 
 
 
8727659
 
1a5a43c
 
8727659
1a5a43c
8727659
1a5a43c
 
 
8727659
1a5a43c
8727659
1a5a43c
8727659
1a5a43c
8727659
1a5a43c
8727659
1a5a43c
8727659
1a5a43c
8727659
1a5a43c
8727659
1a5a43c
8727659
1a5a43c
 
 
 
 
 
 
 
 
 
 
8727659
1a5a43c
8727659
1a5a43c
 
 
 
 
 
 
 
8727659
 
1a5a43c
8727659
1a5a43c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: other
library_name: peft
tags:
- generated_from_trainer
base_model: meta-llama/Meta-Llama-3-8B-Instruct
model-index:
- name: CodeLLAMA3-8BI-300APPS
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CodeLLAMA3-8BI-300APPS

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8161

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 300

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.8319        | 0.1667 | 50   | 0.8777          |
| 0.8227        | 0.3333 | 100  | 0.8417          |
| 0.7556        | 0.5    | 150  | 0.8246          |
| 0.7674        | 0.6667 | 200  | 0.8183          |
| 0.8084        | 0.8333 | 250  | 0.8164          |
| 0.7494        | 1.0    | 300  | 0.8161          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1