File size: 30,080 Bytes
971e79b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
---
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:42333
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 'Tag: chicken & broccoli alfredo


    For chicken & broccoli alfredo, these dietary tags go well with it: dinner, italian
    cuisine, meat recipes, lunch, italian american cuisine, american cuisine, pasta
    recipes, contains dairy, european cuisine, vegetarian'
  sentences:
  - 'Tag: chicken & broccoli alfredo


    What dietary classifications are suitable for chicken & broccoli alfredo?'
  - 'Tag: vegan pad thai


    What dietary labels fit vegan pad thai?'
  - 'Tag: apple pie filling


    Which dietary tags apply to apple pie filling?'
- source_sentence: 'Tag: beef and broccoli


    A small description of beef and broccoli: Stir fried broccoli and tender beef
    strips stir-fried in a rich savory sauce.'
  sentences:
  - 'Tag: chicken lettuce wrap


    What are the principal macro ingredients of chicken lettuce wrap?'
  - 'Tag: teriyaki tofu


    What are the micro ingredients used in teriyaki tofu?'
  - 'Tag: beef and broccoli


    What’s the best way to describe beef and broccoli?'
- source_sentence: 'Tag: scrambled eggs with veggies


    For scrambled eggs with veggies, these dietary tags go well with it: breakfast,
    american cuisine, protein rich recipes, stir fry recipes, gluten free recipes'
  sentences:
  - 'Tag: kimchi fried rice (chicken)


    What are the vital macro ingredients in kimchi fried rice (chicken)?'
  - 'Tag: scrambled eggs with veggies


    What are the key macro ingredients for scrambled eggs with veggies?'
  - 'Tag: scrambled eggs with veggies


    How should I label scrambled eggs with veggies in terms of dietary categories?'
- source_sentence: 'Tag: mixed vegetable stir-fry


    Micro ingredients required to cook mixed vegetable stir-fry:

    Salt, Cornstarch, Black Pepper Powder'
  sentences:
  - 'Tag: vegan pad thai


    Can you provide a thorough explanation of how to cook vegan pad thai?'
  - 'Tag: chicken & broccoli alfredo


    What’s involved in preparing the ingredients for chicken & broccoli alfredo?'
  - 'Tag: mixed vegetable stir-fry


    What are the main components of mixed vegetable stir-fry?'
- source_sentence: 'Tag: vegan pad thai


    Cook time of vegan pad thai based on different serving sizes: Serving 1 - 20 mins,
    Serving 2 - 25 mins, Serving 3 - 30 mins, Serving 4 - 35 mins'
  sentences:
  - 'Tag: vegan pad thai


    What’s the expected cook time for vegan pad thai?'
  - 'Tag: scrambled eggs with veggies


    What dietary classifications suit scrambled eggs with veggies?'
  - 'Tag: vegetable pulao


    What are some creative garnishing tips for vegetable pulao?'
model-index:
- name: SentenceTransformer
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 384
      type: dim_384
    metrics:
    - type: cosine_accuracy@1
      value: 0.9688300597779675
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9701110162254484
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9748078565328779
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9946626814688301
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.9688300597779675
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.8469968687731283
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.8014944491887276
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.4411614005123826
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.3285582123541133
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.6209009393680616
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8938791122768492
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9605094343458989
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9592536302802654
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9733707623385245
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9539794228951505
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.9679760888129804
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9692570452604612
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9752348420153715
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9948761742100769
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.9679760888129804
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.8459294050668943
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.7992741246797609
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.43917591801878736
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.32842427107478345
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.6204243930706356
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8918949005733805
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9569316518238379
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9566533189656364
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9727438392094664
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9511517923410544
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.9694705380017079
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9705380017079419
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9760888129803587
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9948761742100769
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.9694705380017079
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.8471391972672928
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.798462852263023
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.43800170794193005
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.3286967284778983
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.6210852039363994
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8912874628929282
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9550379203773738
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9558695124747556
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9739451594756885
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9499982560169666
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.9698975234842016
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9720324508966696
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9771562766865927
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9938087105038429
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.9698975234842016
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.8472815257614573
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.7965841161400511
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.4339666951323655
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.3288006791102436
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.621300984099874
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.889481670123216
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9478284738318897
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9517343805870713
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.974398746831496
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9459942940005901
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 32
      type: dim_32
    metrics:
    - type: cosine_accuracy@1
      value: 0.9690435525192144
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9707514944491887
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9769427839453458
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9929547395388557
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.9690435525192144
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.8464987190435526
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.7940222032450898
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.4318531169940221
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.3286197185962344
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.6208008011060958
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8871009719002887
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9440570228945548
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9489614439178549
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9734810669215016
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9417483259746888
      name: Cosine Map@100
---

# SentenceTransformer

This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Adi-0-0-Gupta/Embedding-v2")
# Run inference
sentences = [
    'Tag: vegan pad thai\n\nCook time of vegan pad thai based on different serving sizes: Serving 1 - 20 mins, Serving 2 - 25 mins, Serving 3 - 30 mins, Serving 4 - 35 mins',
    'Tag: vegan pad thai\n\nWhat’s the expected cook time for vegan pad thai?',
    'Tag: scrambled eggs with veggies\n\nWhat dietary classifications suit scrambled eggs with veggies?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_384`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.9688    |
| cosine_accuracy@3   | 0.9701    |
| cosine_accuracy@5   | 0.9748    |
| cosine_accuracy@10  | 0.9947    |
| cosine_precision@1  | 0.9688    |
| cosine_precision@3  | 0.847     |
| cosine_precision@5  | 0.8015    |
| cosine_precision@10 | 0.4412    |
| cosine_recall@1     | 0.3286    |
| cosine_recall@3     | 0.6209    |
| cosine_recall@5     | 0.8939    |
| cosine_recall@10    | 0.9605    |
| cosine_ndcg@10      | 0.9593    |
| cosine_mrr@10       | 0.9734    |
| **cosine_map@100**  | **0.954** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.968      |
| cosine_accuracy@3   | 0.9693     |
| cosine_accuracy@5   | 0.9752     |
| cosine_accuracy@10  | 0.9949     |
| cosine_precision@1  | 0.968      |
| cosine_precision@3  | 0.8459     |
| cosine_precision@5  | 0.7993     |
| cosine_precision@10 | 0.4392     |
| cosine_recall@1     | 0.3284     |
| cosine_recall@3     | 0.6204     |
| cosine_recall@5     | 0.8919     |
| cosine_recall@10    | 0.9569     |
| cosine_ndcg@10      | 0.9567     |
| cosine_mrr@10       | 0.9727     |
| **cosine_map@100**  | **0.9512** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value    |
|:--------------------|:---------|
| cosine_accuracy@1   | 0.9695   |
| cosine_accuracy@3   | 0.9705   |
| cosine_accuracy@5   | 0.9761   |
| cosine_accuracy@10  | 0.9949   |
| cosine_precision@1  | 0.9695   |
| cosine_precision@3  | 0.8471   |
| cosine_precision@5  | 0.7985   |
| cosine_precision@10 | 0.438    |
| cosine_recall@1     | 0.3287   |
| cosine_recall@3     | 0.6211   |
| cosine_recall@5     | 0.8913   |
| cosine_recall@10    | 0.955    |
| cosine_ndcg@10      | 0.9559   |
| cosine_mrr@10       | 0.9739   |
| **cosine_map@100**  | **0.95** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.9699    |
| cosine_accuracy@3   | 0.972     |
| cosine_accuracy@5   | 0.9772    |
| cosine_accuracy@10  | 0.9938    |
| cosine_precision@1  | 0.9699    |
| cosine_precision@3  | 0.8473    |
| cosine_precision@5  | 0.7966    |
| cosine_precision@10 | 0.434     |
| cosine_recall@1     | 0.3288    |
| cosine_recall@3     | 0.6213    |
| cosine_recall@5     | 0.8895    |
| cosine_recall@10    | 0.9478    |
| cosine_ndcg@10      | 0.9517    |
| cosine_mrr@10       | 0.9744    |
| **cosine_map@100**  | **0.946** |

#### Information Retrieval
* Dataset: `dim_32`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.969      |
| cosine_accuracy@3   | 0.9708     |
| cosine_accuracy@5   | 0.9769     |
| cosine_accuracy@10  | 0.993      |
| cosine_precision@1  | 0.969      |
| cosine_precision@3  | 0.8465     |
| cosine_precision@5  | 0.794      |
| cosine_precision@10 | 0.4319     |
| cosine_recall@1     | 0.3286     |
| cosine_recall@3     | 0.6208     |
| cosine_recall@5     | 0.8871     |
| cosine_recall@10    | 0.9441     |
| cosine_ndcg@10      | 0.949      |
| cosine_mrr@10       | 0.9735     |
| **cosine_map@100**  | **0.9417** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 42,333 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                            | anchor                                                                             |
  |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                             |
  | details | <ul><li>min: 17 tokens</li><li>mean: 71.13 tokens</li><li>max: 433 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 22.97 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                      | anchor                                                                                            |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
  | <code>Tag: beef and broccoli<br><br>A small description of beef and broccoli: Stir fried broccoli and tender beef strips stir-fried in a rich savory sauce.</code>                                                                                                                                                                                            | <code>Tag: beef and broccoli<br><br>How do you describe beef and broccoli?</code>                 |
  | <code>Tag: beef and broccoli<br><br>Garnishing tips for beef and broccoli: Best served on it's own or on top of hot rice with chopped scallions!</code>                                                                                                                                                                                                       | <code>Tag: beef and broccoli<br><br>What are some classic garnishes for beef and broccoli?</code> |
  | <code>Tag: beef and broccoli<br><br>For beef and broccoli, these dietary tags go well with it: dinner, contains soy, meat recipes, asian american cuisine, lunch, american cuisine, beef recipes, asian cuisine, chinese cuisine, hearty recipes, rice recipes, protein rich recipes, non vegetarian, saucy recipes, stir fry recipes, healthy recipes</code> | <code>Tag: beef and broccoli<br><br>What dietary labels suit beef and broccoli?</code>            |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          384,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 100
- `lr_scheduler_type`: constant
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 100
- `max_steps`: -1
- `lr_scheduler_type`: constant
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_32_cosine_map@100 | dim_384_cosine_map@100 | dim_64_cosine_map@100 |
|:------:|:----:|:-------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|:---------------------:|
| 0.3023 | 25   | 2.7893        | 0.9106                 | 0.9169                 | 0.8833                | 0.9193                 | 0.9013                |
| 0.6047 | 50   | 1.6554        | 0.9061                 | 0.9153                 | 0.8858                | 0.9199                 | 0.8970                |
| 0.9070 | 75   | 0.7514        | 0.9361                 | 0.9382                 | 0.9216                | 0.9423                 | 0.9292                |
| 1.2079 | 100  | 1.2044        | 0.9334                 | 0.9370                 | 0.9186                | 0.9413                 | 0.9263                |
| 1.5102 | 125  | 1.4103        | 0.9312                 | 0.9342                 | 0.9146                | 0.9382                 | 0.9222                |
| 1.8125 | 150  | 0.6925        | 0.9444                 | 0.9463                 | 0.9326                | 0.9502                 | 0.9385                |
| 2.1134 | 175  | 0.7937        | 0.9333                 | 0.9376                 | 0.9196                | 0.9410                 | 0.9256                |
| 2.4157 | 200  | 1.3185        | 0.9321                 | 0.9355                 | 0.9191                | 0.9399                 | 0.9245                |
| 2.7181 | 225  | 1.0296        | 0.9400                 | 0.9426                 | 0.9293                | 0.9466                 | 0.9345                |
| 3.0189 | 250  | 0.3606        | 0.9342                 | 0.9373                 | 0.9231                | 0.9417                 | 0.9282                |
| 3.3212 | 275  | 1.2364        | 0.9381                 | 0.9410                 | 0.9273                | 0.9444                 | 0.9312                |
| 3.6236 | 300  | 1.2507        | 0.9305                 | 0.9340                 | 0.9193                | 0.9385                 | 0.9233                |
| 3.9259 | 325  | 0.3211        | 0.9500                 | 0.9512                 | 0.9417                | 0.9540                 | 0.9460                |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->