File size: 30,080 Bytes
971e79b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 |
---
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:42333
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 'Tag: chicken & broccoli alfredo
For chicken & broccoli alfredo, these dietary tags go well with it: dinner, italian
cuisine, meat recipes, lunch, italian american cuisine, american cuisine, pasta
recipes, contains dairy, european cuisine, vegetarian'
sentences:
- 'Tag: chicken & broccoli alfredo
What dietary classifications are suitable for chicken & broccoli alfredo?'
- 'Tag: vegan pad thai
What dietary labels fit vegan pad thai?'
- 'Tag: apple pie filling
Which dietary tags apply to apple pie filling?'
- source_sentence: 'Tag: beef and broccoli
A small description of beef and broccoli: Stir fried broccoli and tender beef
strips stir-fried in a rich savory sauce.'
sentences:
- 'Tag: chicken lettuce wrap
What are the principal macro ingredients of chicken lettuce wrap?'
- 'Tag: teriyaki tofu
What are the micro ingredients used in teriyaki tofu?'
- 'Tag: beef and broccoli
What’s the best way to describe beef and broccoli?'
- source_sentence: 'Tag: scrambled eggs with veggies
For scrambled eggs with veggies, these dietary tags go well with it: breakfast,
american cuisine, protein rich recipes, stir fry recipes, gluten free recipes'
sentences:
- 'Tag: kimchi fried rice (chicken)
What are the vital macro ingredients in kimchi fried rice (chicken)?'
- 'Tag: scrambled eggs with veggies
What are the key macro ingredients for scrambled eggs with veggies?'
- 'Tag: scrambled eggs with veggies
How should I label scrambled eggs with veggies in terms of dietary categories?'
- source_sentence: 'Tag: mixed vegetable stir-fry
Micro ingredients required to cook mixed vegetable stir-fry:
Salt, Cornstarch, Black Pepper Powder'
sentences:
- 'Tag: vegan pad thai
Can you provide a thorough explanation of how to cook vegan pad thai?'
- 'Tag: chicken & broccoli alfredo
What’s involved in preparing the ingredients for chicken & broccoli alfredo?'
- 'Tag: mixed vegetable stir-fry
What are the main components of mixed vegetable stir-fry?'
- source_sentence: 'Tag: vegan pad thai
Cook time of vegan pad thai based on different serving sizes: Serving 1 - 20 mins,
Serving 2 - 25 mins, Serving 3 - 30 mins, Serving 4 - 35 mins'
sentences:
- 'Tag: vegan pad thai
What’s the expected cook time for vegan pad thai?'
- 'Tag: scrambled eggs with veggies
What dietary classifications suit scrambled eggs with veggies?'
- 'Tag: vegetable pulao
What are some creative garnishing tips for vegetable pulao?'
model-index:
- name: SentenceTransformer
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 384
type: dim_384
metrics:
- type: cosine_accuracy@1
value: 0.9688300597779675
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9701110162254484
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9748078565328779
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9946626814688301
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9688300597779675
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.8469968687731283
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.8014944491887276
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.4411614005123826
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3285582123541133
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6209009393680616
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8938791122768492
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9605094343458989
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9592536302802654
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9733707623385245
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9539794228951505
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.9679760888129804
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9692570452604612
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9752348420153715
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9948761742100769
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9679760888129804
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.8459294050668943
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.7992741246797609
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.43917591801878736
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.32842427107478345
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6204243930706356
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8918949005733805
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9569316518238379
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9566533189656364
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9727438392094664
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9511517923410544
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.9694705380017079
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9705380017079419
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9760888129803587
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9948761742100769
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9694705380017079
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.8471391972672928
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.798462852263023
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.43800170794193005
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3286967284778983
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6210852039363994
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8912874628929282
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9550379203773738
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9558695124747556
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9739451594756885
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9499982560169666
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.9698975234842016
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9720324508966696
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9771562766865927
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9938087105038429
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9698975234842016
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.8472815257614573
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.7965841161400511
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.4339666951323655
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3288006791102436
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.621300984099874
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.889481670123216
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9478284738318897
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9517343805870713
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.974398746831496
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9459942940005901
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 32
type: dim_32
metrics:
- type: cosine_accuracy@1
value: 0.9690435525192144
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9707514944491887
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9769427839453458
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9929547395388557
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9690435525192144
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.8464987190435526
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.7940222032450898
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.4318531169940221
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3286197185962344
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6208008011060958
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8871009719002887
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9440570228945548
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9489614439178549
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9734810669215016
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9417483259746888
name: Cosine Map@100
---
# SentenceTransformer
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Adi-0-0-Gupta/Embedding-v2")
# Run inference
sentences = [
'Tag: vegan pad thai\n\nCook time of vegan pad thai based on different serving sizes: Serving 1 - 20 mins, Serving 2 - 25 mins, Serving 3 - 30 mins, Serving 4 - 35 mins',
'Tag: vegan pad thai\n\nWhat’s the expected cook time for vegan pad thai?',
'Tag: scrambled eggs with veggies\n\nWhat dietary classifications suit scrambled eggs with veggies?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_384`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.9688 |
| cosine_accuracy@3 | 0.9701 |
| cosine_accuracy@5 | 0.9748 |
| cosine_accuracy@10 | 0.9947 |
| cosine_precision@1 | 0.9688 |
| cosine_precision@3 | 0.847 |
| cosine_precision@5 | 0.8015 |
| cosine_precision@10 | 0.4412 |
| cosine_recall@1 | 0.3286 |
| cosine_recall@3 | 0.6209 |
| cosine_recall@5 | 0.8939 |
| cosine_recall@10 | 0.9605 |
| cosine_ndcg@10 | 0.9593 |
| cosine_mrr@10 | 0.9734 |
| **cosine_map@100** | **0.954** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.968 |
| cosine_accuracy@3 | 0.9693 |
| cosine_accuracy@5 | 0.9752 |
| cosine_accuracy@10 | 0.9949 |
| cosine_precision@1 | 0.968 |
| cosine_precision@3 | 0.8459 |
| cosine_precision@5 | 0.7993 |
| cosine_precision@10 | 0.4392 |
| cosine_recall@1 | 0.3284 |
| cosine_recall@3 | 0.6204 |
| cosine_recall@5 | 0.8919 |
| cosine_recall@10 | 0.9569 |
| cosine_ndcg@10 | 0.9567 |
| cosine_mrr@10 | 0.9727 |
| **cosine_map@100** | **0.9512** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:---------|
| cosine_accuracy@1 | 0.9695 |
| cosine_accuracy@3 | 0.9705 |
| cosine_accuracy@5 | 0.9761 |
| cosine_accuracy@10 | 0.9949 |
| cosine_precision@1 | 0.9695 |
| cosine_precision@3 | 0.8471 |
| cosine_precision@5 | 0.7985 |
| cosine_precision@10 | 0.438 |
| cosine_recall@1 | 0.3287 |
| cosine_recall@3 | 0.6211 |
| cosine_recall@5 | 0.8913 |
| cosine_recall@10 | 0.955 |
| cosine_ndcg@10 | 0.9559 |
| cosine_mrr@10 | 0.9739 |
| **cosine_map@100** | **0.95** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.9699 |
| cosine_accuracy@3 | 0.972 |
| cosine_accuracy@5 | 0.9772 |
| cosine_accuracy@10 | 0.9938 |
| cosine_precision@1 | 0.9699 |
| cosine_precision@3 | 0.8473 |
| cosine_precision@5 | 0.7966 |
| cosine_precision@10 | 0.434 |
| cosine_recall@1 | 0.3288 |
| cosine_recall@3 | 0.6213 |
| cosine_recall@5 | 0.8895 |
| cosine_recall@10 | 0.9478 |
| cosine_ndcg@10 | 0.9517 |
| cosine_mrr@10 | 0.9744 |
| **cosine_map@100** | **0.946** |
#### Information Retrieval
* Dataset: `dim_32`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.969 |
| cosine_accuracy@3 | 0.9708 |
| cosine_accuracy@5 | 0.9769 |
| cosine_accuracy@10 | 0.993 |
| cosine_precision@1 | 0.969 |
| cosine_precision@3 | 0.8465 |
| cosine_precision@5 | 0.794 |
| cosine_precision@10 | 0.4319 |
| cosine_recall@1 | 0.3286 |
| cosine_recall@3 | 0.6208 |
| cosine_recall@5 | 0.8871 |
| cosine_recall@10 | 0.9441 |
| cosine_ndcg@10 | 0.949 |
| cosine_mrr@10 | 0.9735 |
| **cosine_map@100** | **0.9417** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 42,333 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 17 tokens</li><li>mean: 71.13 tokens</li><li>max: 433 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 22.97 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
| positive | anchor |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
| <code>Tag: beef and broccoli<br><br>A small description of beef and broccoli: Stir fried broccoli and tender beef strips stir-fried in a rich savory sauce.</code> | <code>Tag: beef and broccoli<br><br>How do you describe beef and broccoli?</code> |
| <code>Tag: beef and broccoli<br><br>Garnishing tips for beef and broccoli: Best served on it's own or on top of hot rice with chopped scallions!</code> | <code>Tag: beef and broccoli<br><br>What are some classic garnishes for beef and broccoli?</code> |
| <code>Tag: beef and broccoli<br><br>For beef and broccoli, these dietary tags go well with it: dinner, contains soy, meat recipes, asian american cuisine, lunch, american cuisine, beef recipes, asian cuisine, chinese cuisine, hearty recipes, rice recipes, protein rich recipes, non vegetarian, saucy recipes, stir fry recipes, healthy recipes</code> | <code>Tag: beef and broccoli<br><br>What dietary labels suit beef and broccoli?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 100
- `lr_scheduler_type`: constant
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 100
- `max_steps`: -1
- `lr_scheduler_type`: constant
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_32_cosine_map@100 | dim_384_cosine_map@100 | dim_64_cosine_map@100 |
|:------:|:----:|:-------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|:---------------------:|
| 0.3023 | 25 | 2.7893 | 0.9106 | 0.9169 | 0.8833 | 0.9193 | 0.9013 |
| 0.6047 | 50 | 1.6554 | 0.9061 | 0.9153 | 0.8858 | 0.9199 | 0.8970 |
| 0.9070 | 75 | 0.7514 | 0.9361 | 0.9382 | 0.9216 | 0.9423 | 0.9292 |
| 1.2079 | 100 | 1.2044 | 0.9334 | 0.9370 | 0.9186 | 0.9413 | 0.9263 |
| 1.5102 | 125 | 1.4103 | 0.9312 | 0.9342 | 0.9146 | 0.9382 | 0.9222 |
| 1.8125 | 150 | 0.6925 | 0.9444 | 0.9463 | 0.9326 | 0.9502 | 0.9385 |
| 2.1134 | 175 | 0.7937 | 0.9333 | 0.9376 | 0.9196 | 0.9410 | 0.9256 |
| 2.4157 | 200 | 1.3185 | 0.9321 | 0.9355 | 0.9191 | 0.9399 | 0.9245 |
| 2.7181 | 225 | 1.0296 | 0.9400 | 0.9426 | 0.9293 | 0.9466 | 0.9345 |
| 3.0189 | 250 | 0.3606 | 0.9342 | 0.9373 | 0.9231 | 0.9417 | 0.9282 |
| 3.3212 | 275 | 1.2364 | 0.9381 | 0.9410 | 0.9273 | 0.9444 | 0.9312 |
| 3.6236 | 300 | 1.2507 | 0.9305 | 0.9340 | 0.9193 | 0.9385 | 0.9233 |
| 3.9259 | 325 | 0.3211 | 0.9500 | 0.9512 | 0.9417 | 0.9540 | 0.9460 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |