File size: 2,711 Bytes
1669867 dc515c8 7c60822 dc515c8 1669867 dc515c8 1669867 dc515c8 1669867 dc515c8 1669867 dc515c8 1669867 dc515c8 fc1e94c dc515c8 1669867 dc515c8 1669867 fc1e94c dc515c8 1669867 7c60822 1669867 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
tags:
- adapter-transformers
- xlm-roberta
datasets:
- UKPLab/m2qa
---
# M2QA Adapter: Domain Adapter for MAD-X² Setup
This adapter is part of the M2QA publication to achieve language and domain transfer via adapters.
📃 Paper: [https://aclanthology.org/2024.findings-emnlp.365/](https://aclanthology.org/2024.findings-emnlp.365/)
🏗️ GitHub repo: [https://github.com/UKPLab/m2qa](https://github.com/UKPLab/m2qa)
💾 Hugging Face Dataset: [https://huggingface.co/UKPLab/m2qa](https://huggingface.co/UKPLab/m2qa)
**Important:** This adapter only works together with the MAD-X-2 language and QA head adapter.
This [adapter](https://adapterhub.ml) for the `xlm-roberta-base` model that was trained using the **[Adapters](https://github.com/Adapter-Hub/adapters)** library. For detailed training details see our paper or GitHub repository: [https://github.com/UKPLab/m2qa](https://github.com/UKPLab/m2qa). You can find the evaluation results for this adapter on the M2QA dataset in the GitHub repo and in the paper.
## Usage
First, install `adapters`:
```
pip install -U adapters
```
Now, the adapter can be loaded and activated like this:
```python
from adapters import AutoAdapterModel
from adapters.composition import Stack
model = AutoAdapterModel.from_pretrained("xlm-roberta-base")
# 1. Load language adapter
language_adapter_name = model.load_adapter("AdapterHub/m2qa-xlm-roberta-base-mad-x-2-english")
# 2. Load domain adapter
domain_adapter_name = model.load_adapter("AdapterHub/m2qa-xlm-roberta-base-mad-x-2-product-reviews")
# 3. Load QA head adapter
qa_adapter_name = model.load_adapter("AdapterHub/m2qa-xlm-roberta-base-mad-x-2-qa-head")
# 4. Activate them via the adapter stack
model.active_adapters = Stack(language_adapter_name, domain_adapter_name, qa_adapter_name)
```
See our repository for more information: See https://github.com/UKPLab/m2qa/tree/main/Experiments/mad-x-2
## Contact
Leon Engländer:
- [HuggingFace Profile](https://huggingface.co/lenglaender)
- [GitHub](https://github.com/lenglaender)
- [Twitter](https://x.com/LeonEnglaender)
## Citation
```
@inproceedings{englander-etal-2024-m2qa,
title = "M2QA: Multi-domain Multilingual Question Answering",
author = {Engl{\"a}nder, Leon and
Sterz, Hannah and
Poth, Clifton A and
Pfeiffer, Jonas and
Kuznetsov, Ilia and
Gurevych, Iryna},
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.365",
pages = "6283--6305",
}
``` |