File size: 24,237 Bytes
7ad2d01 9b555a0 7ad2d01 8a19abc 9b555a0 8a19abc 7ad2d01 8a19abc 7ad2d01 8a19abc 7ad2d01 8a19abc 7ad2d01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
import gradio as gr
import json
import shutil
import sqlite3
import subprocess
import sys
sys.path.append('src/blip')
sys.path.append('src/clip')
import clip
import hashlib
import math
import numpy as np
import pickle
import torchvision.transforms as T
import torchvision.transforms.functional as TF
import requests
import wget
import gradio as grad, random, re
import torch
import os
import utils
import html
import re
import base64
import subprocess
import argparse
import logging
import streamlit as st
import pandas as pd
import datasets
import yaml
import textwrap
import tornado
import time
import cv2 as cv
from torch import autocast
from diffusers import StableDiffusionPipeline
from transformers import pipeline, set_seed
from huggingface_hub import HfApi
from huggingface_hub import hf_hub_download
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers import StableDiffusionImg2ImgPipeline
from PIL import Image
from datasets import load_dataset
from share_btn import community_icon_html, loading_icon_html, share_js
from io import BytesIO
from models.blip import blip_decoder
from torch import nn
from torch.nn import functional as F
from tqdm import tqdm
from pathlib import Path
from flask import Flask, request, jsonify, g
from flask_expects_json import expects_json
from flask_cors import CORS
from huggingface_hub import Repository
from flask_apscheduler import APScheduler
from jsonschema import ValidationError
from os import mkdir
from os.path import isdir
from colorthief import ColorThief
from data_measurements.dataset_statistics import DatasetStatisticsCacheClass as dmt_cls
from utils import dataset_utils
from utils import streamlit_utils as st_utils
from dataclasses import asdict
from .transfer import transfer_color
from .utils import convert_bytes_to_pil
from diffusers import DiffusionPipeline
from huggingface_hub.inference_api import InferenceApi
from huggingface_hub import login
from datasets import load_dataset
#from torch import autocast
#from diffusers import StableDiffusionPipeline
#from io import BytesIO
#import base64
#import torch
is_colab = utils.is_google_colab()
from share_btn import community_icon_html, loading_icon_html, share_js
from huggingface_hub import login
login()
from huggingface_hub.inference_api import InferenceApi
inference = InferenceApi(repo_id="bert-base-uncased", token=API_TOKEN)
from datasets import load_dataset
dataset = load_dataset("Fazzie/Teyvat")
from datasets import load_dataset
dataset = load_dataset("Guizmus/AnimeChanStyle")
from datasets import load_dataset
dataset = load_dataset("Fazzie/Teyvat")
from datasets import load_dataset
dataset = load_dataset("Guizmus/AnimeChanStyle")
sys.path.append('src/blip')
sys.path.append('src/clip')
pipeline = DiffusionPipeline.from_pretrained("flax/waifu-diffusion")
pipeline = DiffusionPipeline.from_pretrained("flax/Cyberpunk-Anime-Diffusion")
pipeline = DiffusionPipeline.from_pretrained("technillogue/waifu-diffusion")
pipeline = DiffusionPipeline.from_pretrained("svjack/Stable-Diffusion-Pokemon-en")
pipeline = DiffusionPipeline.from_pretrained("AdamOswald1/Idk")
pipeline = DiffusionPipeline.from_pretrained("katakana/2D-Mix")
class Model:
def __init__(self, name, path, prefix):
self.name = name
self.path = path
self.prefix = prefix
self.pipe_t2i = None
self.pipe_i2i = None
models = [
Model("Custom model", "", ""),
Model("Arcane", "nitrosocke/Arcane-Diffusion", "arcane style"),
Model("Archer", "nitrosocke/archer-diffusion", "archer style"),
Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style"),
Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style"),
Model("Modern Disney", "nitrosocke/modern-disney-diffusion", "modern disney style"),
Model("Classic Disney", "nitrosocke/classic-anim-diffusion", "classic disney style"),
Model("Waifu", "hakurei/waifu-diffusion", ""),
Model("Pokémon", "lambdalabs/sd-pokemon-diffusers", "pokemon style"),
Model("Pokémon", "svjack/Stable-Diffusion-Pokemon-en", "pokemon style"),
Model("Pony Diffusion", "AstraliteHeart/pony-diffusion", "pony style"),
Model("Robo Diffusion", "nousr/robo-diffusion", "robo style"),
Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion, flax/Cyberpunk-Anime-Diffusion", "cyberpunk style"),
Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion", "cyberpunk style"),
Model("Cyberpunk Anime", "flax/Cyberpunk-Anime-Diffusion", "cyberpunk style"),
Model("Cyberware", "Eppinette/Cyberware", "cyberware"),
Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy"),
Model("Waifu", "flax/waifu-diffusion", ""),
Model("Dark Souls", "Guizmus/DarkSoulsDiffusion", "dark souls style"),
Model("Waifu", "technillogue/waifu-diffusion", ""),
Model("Ouroborus", "Eppinette/Ouroboros", "m_ouroboros style"),
Model("Ouroborus alt", "Eppinette/Ouroboros", "m_ouroboros"),
Model("Waifu", "Eppinette/Mona", "Mona"),
Model("Waifu", "Eppinette/Mona", "Mona Woman"),
Model("Waifu", "Eppinette/Mona", "Mona Genshin"),
Model("Genshin", "Eppinette/Mona", "Mona"),
Model("Genshin", "Eppinette/Mona", "Mona Woman"),
Model("Genshin", "Eppinette/Mona", "Mona Genshin"),
Model("Space Machine", "rabidgremlin/sd-db-epic-space-machine", "EpicSpaceMachine"),
Model("Spacecraft", "rabidgremlin/sd-db-epic-space-machine", "EpicSpaceMachine"),
Model("TARDIS", "Guizmus/Tardisfusion", "Classic Tardis style"),
Model("TARDIS", "Guizmus/Tardisfusion", "Modern Tardis style"),
Model("TARDIS", "Guizmus/Tardisfusion", "Tardis Box style"),
Model("Spacecraft", "Guizmus/Tardisfusion", "Classic Tardis style"),
Model("Spacecraft", "Guizmus/Tardisfusion", "Modern Tardis style"),
Model("Spacecraft", "Guizmus/Tardisfusion", "Tardis Box style"),
Model("CLIP", "EleutherAI/clip-guided-diffusion", "CLIP"),
Model("Face Swap", "felixrosberg/face-swap", "faceswap"),
Model("Face Swap", "felixrosberg/face-swap", "faceswap with"),
Model("Face Swap", "felixrosberg/face-swap", "faceswapped"),
Model("Face Swap", "felixrosberg/face-swap", "faceswapped with"),
Model("Face Swap", "felixrosberg/face-swap", "face on"),
Model("Waifu", "Fampai/lumine_genshin_impact", "lumine_genshin"),
Model("Waifu", "Fampai/lumine_genshin_impact", "lumine"),
Model("Waifu", "Fampai/lumine_genshin_impact", "Lumine Genshin"),
Model("Waifu", "Fampai/lumine_genshin_impact", "Lumine_genshin"),
Model("Waifu", "Fampai/lumine_genshin_impact", "Lumine_Genshin"),
Model("Waifu", "Fampai/lumine_genshin_impact", "Lumine"),
Model("Genshin", "Fampai/lumine_genshin_impact", "Lumine_genshin"),
Model("Genshin", "Fampai/lumine_genshin_impact", "Lumine_Genshin"),
Model("Genshin", "Fampai/lumine_genshin_impact", "Lumine"),
Model("Genshin", "Fampai/lumine_genshin_impact", "Lumine Genshin"),
Model("Genshin", "Fampai/lumine_genshin_impact", "lumine"),
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "Ganyu"),
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "Ganyu Woman"),
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "Ganyu Genshin"),
Model("Waifu", "sd-concepts-library/ganyu-genshin-impact", "Ganyu"),
Model("Waifu", "sd-concepts-library/ganyu-genshin-impact", "Ganyu Woman"),
Model("Waifu", "sd-concepts-library/ganyu-genshin-impact", "Ganyu Genshin"),
Model("Waifu", "Fampai/raiden_genshin_impact", "raiden_ei"),
Model("Waifu", "Fampai/raiden_genshin_impact", "Raiden Ei"),
Model("Waifu", "Fampai/raiden_genshin_impact", "Ei Genshin"),
Model("Waifu", "Fampai/raiden_genshin_impact", "Raiden Genshin"),
Model("Waifu", "Fampai/raiden_genshin_impact", "Raiden_Genshin"),
Model("Waifu", "Fampai/raiden_genshin_impact", "Ei_Genshin"),
Model("Waifu", "Fampai/raiden_genshin_impact", "Raiden"),
Model("Waifu", "Fampai/raiden_genshin_impact", "Ei"),
Model("Genshin", "Fampai/raiden_genshin_impact", "Raiden Ei"),
Model("Genshin", "Fampai/raiden_genshin_impact", "raiden_ei"),
Model("Genshin", "Fampai/raiden_genshin_impact", "Raiden"),
Model("Genshin", "Fampai/raiden_genshin_impact", "Raiden Genshin"),
Model("Genshin", "Fampai/raiden_genshin_impact", "Ei Genshin"),
Model("Genshin", "Fampai/raiden_genshin_impact", "Raiden_Genshin"),
Model("Genshin", "Fampai/raiden_genshin_impact", "Ei_Genshin"),
Model("Genshin", "Fampai/raiden_genshin_impact", "Ei"),
Model("Waifu", "Fampai/hutao_genshin_impact", "hutao_genshin"),
Model("Waifu", "Fampai/hutao_genshin_impact", "HuTao_Genshin"),
Model("Waifu", "Fampai/hutao_genshin_impact", "HuTao Genshin"),
Model("Waifu", "Fampai/hutao_genshin_impact", "HuTao"),
Model("Waifu", "Fampai/hutao_genshin_impact", "hutao_genshin"),
Model("Genshin", "Fampai/hutao_genshin_impact", "hutao_genshin"),
Model("Genshin", "Fampai/hutao_genshin_impact", "HuTao_Genshin"),
Model("Genshin", "Fampai/hutao_genshin_impact", "HuTao Genshin"),
Model("Genshin", "Fampai/hutao_genshin_impact", "HuTao"),
Model("Genshin", "Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "Female"),
Model("Genshin", "Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "female"),
Model("Genshin", "Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "Woman"),
Model("Genshin", "Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "woman"),
Model("Genshin", "Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "Girl"),
Model("Genshin", "Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "girl"),
Model("Genshin", "Fampai/lumine_genshin_impact", "Female"),
Model("Genshin", "Fampai/lumine_genshin_impact", "female"),
Model("Genshin", "Fampai/lumine_genshin_impact", "Woman"),
Model("Genshin", "Fampai/lumine_genshin_impact", "woman"),
Model("Genshin", "Fampai/lumine_genshin_impact", "Girl"),
Model("Genshin", "Fampai/lumine_genshin_impact", "girl"),
Model("Genshin", "Eppinette/Mona", "Female"),
Model("Genshin", "Eppinette/Mona", "female"),
Model("Genshin", "Eppinette/Mona", "Woman"),
Model("Genshin", "Eppinette/Mona", "woman"),
Model("Genshin", "Eppinette/Mona", "Girl"),
Model("Genshin", "Eppinette/Mona", "girl"),
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "Female"),
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "female"),
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "Woman"),
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "woman"),
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "Girl"),
Model("Genshin", "sd-concepts-library/ganyu-genshin-impact", "girl"),
Model("Genshin", "Fampai/raiden_genshin_impact", "Female"),
Model("Genshin", "Fampai/raiden_genshin_impact", "female"),
Model("Genshin", "Fampai/raiden_genshin_impact", "Woman"),
Model("Genshin", "Fampai/raiden_genshin_impact", "woman"),
Model("Genshin", "Fampai/raiden_genshin_impact", "Girl"),
Model("Genshin", "Fampai/raiden_genshin_impact", "girl"),
Model("Genshin", "Fampai/hutao_genshin_impact", "Female"),
Model("Genshin", "Fampai/hutao_genshin_impact", "female"),
Model("Genshin", "Fampai/hutao_genshin_impact", "Woman"),
Model("Genshin", "Fampai/hutao_genshin_impact", "woman"),
Model("Genshin", "Fampai/hutao_genshin_impact", "Girl"),
Model("Genshin", "Fampai/hutao_genshin_impact", "girl"),
Model("Waifu", "crumb/genshin-stable-inversion, yuiqena/GenshinImpact, Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "Genshin"),
Model("Waifu", "crumb/genshin-stable-inversion, yuiqena/GenshinImpact, Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", "Genshin Impact"),
Model("Genshin", "crumb/genshin-stable-inversion, yuiqena/GenshinImpact, Fampai/lumine_genshin_impact, Eppinette/Mona, sd-concepts-library/ganyu-genshin-impact, Fampai/raiden_genshin_impact, Fampai/hutao_genshin_impact", ""),
Model("Waifu", "crumb/genshin-stable-inversion", "Genshin"),
Model("Waifu", "crumb/genshin-stable-inversion", "Genshin Impact"),
Model("Genshin", "crumb/genshin-stable-inversion", ""),
Model("Waifu", "yuiqena/GenshinImpact", "Genshin"),
Model("Waifu", "yuiqena/GenshinImpact", "Genshin Impact"),
Model("Genshin", "yuiqena/GenshinImpact", ""),
Model("Waifu", "hakurei/waifu-diffusion, flax/waifu-diffusion, technillogue/waifu-diffusion, Guizmus/AnimeChanStyle, katakana/2D-Mix", ""),
Model("Pokémon", "lambdalabs/sd-pokemon-diffusers, svjack/Stable-Diffusion-Pokemon-en", "pokemon style"),
Model("Pokémon", "lambdalabs/sd-pokemon-diffusers, svjack/Stable-Diffusion-Pokemon-en", ""),
Model("Test", "AdamoOswald1/Idk", ""),
Model("Anime", "Guizmus/AnimeChanStyle", "AnimeChan Style"),
Model("Genshin", "Guizmus/AnimeChanStyle", "AnimeChan Style"),
Model("Waifu", "Guizmus/AnimeChanStyle", "AnimeChan Style"),
Model("Waifu", "Guizmus/AnimeChanStyle", "Genshin"),
Model("Waifu", "Guizmus/AnimeChanStyle", "Genshin Impact"),
Model("Genshin", "Guizmus/AnimeChanStyle", ""),
Model("Anime", "Guizmus/AnimeChanStyle", ""),
Model("Waifu", "Guizmus/AnimeChanStyle", ""),
Model("Anime", "Guizmus/AnimeChanStyle, katakana/2D-Mix", ""),
Model("Anime", "katakana/2D-Mix", "2D-Mix"),
Model("Genshin", "katakana/2D-Mix", "2D-Mix"),
Model("Waifu", "katakana/2D-Mix", "2D-Mix"),
Model("Waifu", "katakana/2D-Mix", "Genshin"),
Model("Waifu", "katakana/2D-Mix", "Genshin Impact"),
Model("Genshin", "katakana/2D-Mix", ""),
Model("Anime", "katakana/2D-Mix", ""),
Model("Waifu", "katakana/2D-Mix", ""),
Model("Beeple", "riccardogiorato/beeple-diffusion", "beeple style "),
Model("Avatar", "riccardogiorato/avatar-diffusion", "avatartwow style "),
Model("Poolsuite", "prompthero/poolsuite", "poolsuite style ")
]
# Model("Beksinski", "s3nh/beksinski-style-stable-diffusion", "beksinski style "),
# Model("Guohua", "Langboat/Guohua-Diffusion", "guohua style ")
scheduler = DPMSolverMultistepScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
trained_betas=None,
predict_epsilon=True,
thresholding=False,
algorithm_type="dpmsolver++",
solver_type="midpoint",
lower_order_final=True,
)
custom_model = None
if is_colab:
models.insert(0, Model("Custom model", "", ""))
custom_model = models[0]
last_mode = "txt2img"
current_model = models[1] if is_colab else models[0]
current_model_path = current_model.path
if is_colab:
pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16, scheduler=scheduler)
pipe = StableDiffusionPipeline.from_pretrained("hakurei/waifu-diffusion", torch_type=torch.float16, revision="fp16")
pipe = StableDiffusionPipeline.from_pretrained(current_model, torch_dtype=torchfloat, revision="fp16")
gpt2_pipe = pipeline('text-generation', model='Gustavosta/MagicPrompt-Stable-Diffusion', tokenizer='gpt2')
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=True, revision="fp16", torch_dtype=torch.float16).to("cuda")
pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16)
pipeline = DiffusionPipeline.from_pretrained("flax/waifu-diffusion")
pipeline = DiffusionPipeline.from_pretrained("flax/Cyberpunk-Anime-Diffusion")
pipeline = DiffusionPipeline.from_pretrained("technillogue/waifu-diffusion")
pipeline = DiffusionPipeline.from_pretrained("svjack/Stable-Diffusion-Pokemon-en")
pipeline = DiffusionPipeline.from_pretrained("AdamOswald1/Idk")
pipeline = DiffusionPipeline.from_pretrained("katakana/2D-Mix")
else: # download all models
vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16)
for model in models:
try:
unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16)
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
except:
models.remove(model)
pipe = models[0].pipe_t2i
if torch.cuda.is_available():
pipe = pipe.to("cuda")
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
def custom_model_changed(path):
models[0].path = path
global current_model
current_model = models[0]
def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
global current_model
for model in models:
if model.name == model_name:
current_model = model
model_path = current_model.path
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
if img is not None:
return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator)
else:
return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator)
def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator=None):
global last_mode
global pipe
global current_model_path
if model_path != current_model_path or last_mode != "txt2img":
current_model_path = model_path
if is_colab or current_model == custom_model:
pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
else:
pipe.to("cpu")
pipe = current_model.pipe_t2i
if torch.cuda.is_available():
pipe = pipe.to("cuda")
last_mode = "txt2img"
prompt = current_model.prefix + prompt
result = pipe(
prompt,
negative_prompt = neg_prompt,
# num_images_per_prompt=n_images,
num_inference_steps = int(steps),
guidance_scale = guidance,
width = width,
height = height,
generator = generator)
def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator=None):
global last_mode
global pipe
global current_model_path
if model_path != current_model_path or last_mode != "img2img":
current_model_path = model_path
if is_colab or current_model == custom_model:
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
else:
pipe.to("cpu")
pipe = current_model.pipe_i2i
if torch.cuda.is_available():
pipe = pipe.to("cuda")
last_mode = "img2img"
prompt = current_model.prefix + prompt
ratio = min(height / img.height, width / img.width)
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
result = pipe(
prompt,
negative_prompt = neg_prompt,
# num_images_per_prompt=n_images,
init_image = img,
num_inference_steps = int(steps),
strength = strength,
guidance_scale = guidance,
width = width,
height = height,
generator = generator)
css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
f"""
<div class="finetuned-diffusion-div">
<div>
<h1>Playground Diffusion</h1>
</div>
<p>
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
<a href="https://huggingface.co/riccardogiorato/avatar-diffusion">Avatar</a>,<br/>
<a href="https://huggingface.co/riccardogiorato/beeple-diffusion">Beeple</a>,<br/>
<a href="https://huggingface.co/s3nh/beksinski-style-stable-diffusion">Beksinski</a>,<br/>
Diffusers 🧨 SD model hosted on HuggingFace 🤗.
Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
</p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=55):
with gr.Group():
model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
with gr.Box(visible=False) as custom_model_group:
custom_model_path = gr.Textbox(label="Custom model path", placeholder="Path to model, e.g. nitrosocke/Arcane-Diffusion", interactive=True)
gr.HTML("<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>")
with gr.Row():
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
image_out = gr.Image(height=512)
# gallery = gr.Gallery(
# label="Generated images", show_label=False, elem_id="gallery"
# ).style(grid=[1], height="auto")
with gr.Column(scale=45):
with gr.Tab("Options"):
with gr.Group():
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
# n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)
with gr.Row():
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
steps = gr.Slider(label="Steps", value=25, minimum=2, maximum=75, step=1)
with gr.Row():
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
with gr.Tab("Image to image"):
with gr.Group():
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
if is_colab:
model_name.change(lambda x: gr.update(visible = x == models[0].name), inputs=model_name, outputs=custom_model_group)
custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt]
prompt.submit(inference, inputs=inputs, outputs=image_out)
generate.click(inference, inputs=inputs, outputs=image_out)
if not is_colab:
demo.queue(concurrency_count=1)
demo.launch(debug=is_colab, share=is_colab) |