File size: 30,895 Bytes
1aaa6f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1440
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/modernbert-embed-base
widget:
- source_sentence: What section of the Code of Federal Regulations is quoted?
  sentences:
  - "and other legal relations of any interested party seeking such declaration.”\
    \  28 U.S.C. § 2201(a).  \nThis statute “is not an independent source of federal\
    \ jurisdiction”; rather, “the availability of \nsuch relief presupposes the existence\
    \ of a judicially remediable right.”  Schilling v. Rogers, 363 \nU.S. 666, 677\
    \ (1960).  The Court independently has jurisdiction here under the mandamus"
  - "appropriate only when the nature of the work is sporadic and unpredictable so\
    \ that a tour of duty \ncannot be regularly scheduled in advance.”  Pl.’s Mem.\
    \ at 18 (quoting 5 C.F.R. § 340.403(a)).  \nThis regulation explicitly distinguishes\
    \ “intermittent” status from “part-time” status, as it says \nthat “[w]hen an\
    \ agency is able to schedule work in advance on a regular basis, it has an"
  - "its discretion, a reviewing court looks to the trial court’s “stated justification\
    \ for refusing to \nmodify” the order. Skolnick, 191 Ill. 2d at 226.  \n \n \n\
    In the case at bar, the one-sentence April 25 order did not provide any reasons\
    \ at all. The \nlosing party drafted the order without any stated reasons, although\
    \ a lack of stated reasons may"
- source_sentence: Which office was determined to be an agency in the Soucie case?
  sentences:
  - "inquiry”); Doe v. Skyline Automobiles, Inc., 375 F. Supp. 3d 401, 405-06 (S.D.N.Y.\
    \ 2019) \n(“other factors must be taken into consideration and analyzed in comparison\
    \ to the public’s \ninterest and the interests of the opposing parties”). \n \n\
    \ \nIllinois has taken steps to protect individuals’ private information. Examples\
    \ include the"
  - "Aside from whether the Department’s “approach to artificial intelligence development\
    \ and \nimplementation” should be considered “critical infrastructure,” the Department’s\
    \ affidavit is \n \n \n5\ndeficient in showing that its withholdings qualify as\
    \ “critical infrastructure security information” \nin other ways.  For example,\
    \ the affidavit fails to explain how the disclosure of the withheld infor-"
  - "whether an entity wields “substantial independent authority”:  investigative\
    \ power and authority \nto make final and binding decisions. \nConsider first\
    \ Soucie.  The Circuit held that the Office of Science and Technology \n(“OST”)\
    \ was an agency because, beyond advising the President, it had the “independent\
    \ function"
- source_sentence: What is the appellant's burden on appeal?
  sentences:
  - "Defs.’ Reply at 7–8, 8 n.1.  It cites Judicial Watch, Inc. v. Department of Energy,\
    \ 412 F.3d 125 \n(D.C. Cir. 2005), which dealt with the records of employees that\
    \ the Department of Energy \n(“DOE”) had detailed to the National Energy Policy\
    \ Development Group (“NEPDG”).  Id. at \n132.  The Government quotes the court’s\
    \ statement that “the records those employees created or"
  - "records available for inspection and copying is a violation of 5 U.S.C. app.\
    \ 2 § 10(b) and \nconstitutes a failure to perform a duty owed to EPIC within\
    \ the meaning of 28 U.S.C. § 1361.”  \nId. .  Both counts seek “a writ of mandamus”\
    \ compelling the Commission and its officers to \ncomply with FACA.  Id. , 139.\
    \  These counts make clear that EPIC seeks mandamus relief"
  - "counsel now cannot fairly contend that the trial court did not consider all the\
    \ facts, especially \nwhen [d]efendant’s counsel offers no court transcript to\
    \ show otherwise.” On appeal, it is \ngenerally the appellant’s burden to provide\
    \ the reviewing court with a sufficient record to \nestablish the error that he\
    \ complains of. Webster v. Hartman, 195 Ill. 2d 426, 436 (2001). “[A]"
- source_sentence: What does the text refer to as a 'statutory distinction'?
  sentences:
  - "inconsistency in deeming the same entity an advisory committee and an agency.”\
    \  Defs.’ Reply \nat 8.  The problem, according to the Government, is that FACA\
    \ generally requires disclosure of \nrecords, yet Exemption 5 would shield a portion\
    \ of these records from public view, which would \nundermine FACA’s “purpose.”\
    \  Id. at 8–9.   Gates, Wolfe, and the 1988 OLC opinion echo this"
  - "agencies are operating arms of government characterized by ‘substantial independent\
    \ authority in \nthe exercise of specific functions.’”  Disclosure of Advisory\
    \ Comm. Deliberative Materials, 12 \nOp. O.L.C. 73, 81 (1988).  This “statutory\
    \ distinction,” it concludes, signifies that “advisory \ncommittees are not agencies.”\
    \  Id."
  - "the Hon. Israel A. Desierto, Judge, presiding. \n \n \nJudgment \nAffirmed. \n\
    \ \nCounsel on \nAppeal \n \nVictor P. Henderson and Colin Quinn Commito, of Henderson\
    \ Parks, \nLLC, of Chicago, for appellant. \n \nTamara N. Holder, Law Firm of\
    \ Tamara N. Holder LLC, of Chicago, \nfor appellee. \n \n \n \nPanel \n \nPRESIDING\
    \ JUSTICE ODEN JOHNSON delivered the judgment of \nthe court, with opinion."
- source_sentence: What do the newly enacted laws prohibit hospitals from doing regarding
    sexual assault victims?
  sentences:
  - "exclusion for committees “composed wholly of . . . permanent part-time . . .\
    \ employees.”  5 \nU.S.C. app. 2 § 3(2). \n32 \nA second, independent reason why\
    \ the Commission does not fall within this exclusion is \nthat its members are\
    \ not “part-time” federal employees.  Instead, they are “intermittent” \nemployees.\
    \  EPIC points to a regulation stating that “[a]n intermittent work schedule is"
  - "committee, board, commission, council, conference, panel, task force, or other\
    \ similar group, or \nany subcommittee or other subgroup thereof.”  Id. § 3(2).\
    \  Second, it must be “established by \nstatute or reorganization plan,” “established\
    \ or utilized by the President,” or “established or \nutilized by one or more\
    \ agencies.”  Id.  Third, it must be “established” or “utilized” “in the"
  - "confidential advisors (735 ILCS 5/8-804(c) (West 2022)) and prohibit hospitals\
    \ treating sexual \nassault victims from directly billing the victims for the\
    \ services, communicating with victims \nabout a bill, or referring overdue bills\
    \ to collection agencies or credit reporting agencies. 410 \nILCS 70/7.5(a)(1)-(4)\
    \ (West 2022). These recently enacted laws encourage victims to report"
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB)
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.51875
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.69375
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.75
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.83125
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.51875
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.23125
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14999999999999997
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08312499999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.51875
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.69375
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.75
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.83125
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.671534966140965
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6211160714285715
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6261949467277568
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.49375
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.73125
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.825
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.49375
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2333333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14625
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08249999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.49375
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.73125
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.825
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6607544642083831
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6085367063492064
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6146313607229802
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.4375
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.6875
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.725
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.79375
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4375
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.22916666666666666
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.145
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.079375
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.4375
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.6875
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.725
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.79375
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6224957341997419
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.566939484126984
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5740997074969412
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.40625
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.625
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.69375
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.775
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.40625
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.20833333333333331
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.13874999999999998
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07749999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.40625
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.625
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.69375
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.775
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5931742895464828
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5348859126984128
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5417826806767716
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.30625
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.4875
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6875
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.30625
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.16249999999999998
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.12
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.06875
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.30625
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.4875
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6875
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4854299754851493
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.42175347222222237
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4326739799760461
      name: Cosine Map@100
---

# Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB)

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision d556a88e332558790b210f7bdbe87da2fa94a8d8 -->
- **Maximum Sequence Length:** 1024 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("AdamLucek/modernbert-embed-quickb-video")
# Run inference
sentences = [
    'What do the newly enacted laws prohibit hospitals from doing regarding sexual assault victims?',
    'confidential advisors (735 ILCS 5/8-804(c) (West 2022)) and prohibit hospitals treating sexual \nassault victims from directly billing the victims for the services, communicating with victims \nabout a bill, or referring overdue bills to collection agencies or credit reporting agencies. 410 \nILCS 70/7.5(a)(1)-(4) (West 2022). These recently enacted laws encourage victims to report',
    'exclusion for committees “composed wholly of . . . permanent part-time . . . employees.”  5 \nU.S.C. app. 2 § 3(2). \n32 \nA second, independent reason why the Commission does not fall within this exclusion is \nthat its members are not “part-time” federal employees.  Instead, they are “intermittent” \nemployees.  EPIC points to a regulation stating that “[a]n intermittent work schedule is',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | dim_768    | dim_512    | dim_256    | dim_128    | dim_64     |
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1   | 0.5188     | 0.4938     | 0.4375     | 0.4062     | 0.3063     |
| cosine_accuracy@3   | 0.6937     | 0.7        | 0.6875     | 0.625      | 0.4875     |
| cosine_accuracy@5   | 0.75       | 0.7312     | 0.725      | 0.6937     | 0.6        |
| cosine_accuracy@10  | 0.8313     | 0.825      | 0.7937     | 0.775      | 0.6875     |
| cosine_precision@1  | 0.5188     | 0.4938     | 0.4375     | 0.4062     | 0.3063     |
| cosine_precision@3  | 0.2313     | 0.2333     | 0.2292     | 0.2083     | 0.1625     |
| cosine_precision@5  | 0.15       | 0.1462     | 0.145      | 0.1387     | 0.12       |
| cosine_precision@10 | 0.0831     | 0.0825     | 0.0794     | 0.0775     | 0.0688     |
| cosine_recall@1     | 0.5188     | 0.4938     | 0.4375     | 0.4062     | 0.3063     |
| cosine_recall@3     | 0.6937     | 0.7        | 0.6875     | 0.625      | 0.4875     |
| cosine_recall@5     | 0.75       | 0.7312     | 0.725      | 0.6937     | 0.6        |
| cosine_recall@10    | 0.8313     | 0.825      | 0.7937     | 0.775      | 0.6875     |
| **cosine_ndcg@10**  | **0.6715** | **0.6608** | **0.6225** | **0.5932** | **0.4854** |
| cosine_mrr@10       | 0.6211     | 0.6085     | 0.5669     | 0.5349     | 0.4218     |
| cosine_map@100      | 0.6262     | 0.6146     | 0.5741     | 0.5418     | 0.4327     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 1,440 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                            |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 7 tokens</li><li>mean: 15.14 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 57 tokens</li><li>mean: 97.82 tokens</li><li>max: 161 tokens</li></ul> |
* Samples:
  | anchor                                                                              | positive                                                                                                                                                                                                                                                                                                                                                                                                                                        |
  |:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What must the advisory committee make available for public inspection?</code> | <code>advisory committee shall be available for public inspection and copying . . . until the advisory <br>committee ceases to exist.”  Id. § 10(b).  Unlike FOIA, this provision looks forward.  It requires <br>committees to take affirmative steps to make their records are public, even absent a request. <br>FACA’s definition of “advisory committee” has four parts.  First, it includes “any</code>                                   |
  | <code>What did the landlords fail to alert the court about?</code>                  | <code>court documents containing fake citations, we conclude that <br>imposing monetary sanctions or dismissing this appeal would be <br>disproportionate to Al-Hamim’s violation of the Appellate Rules.  <br> <br>23 <br>Further, in their answer brief, the landlords failed to alert this court <br>to the hallucinations in Al-Hamim’s opening brief and did not <br>request an award of attorney fees against Al-Hamim.  Under the</code> |
  | <code>On what date was the motion served on the plaintiff’s counsel?</code>         | <code>also alleged (1) that plaintiff violated section 2-401(e) and (2) that she lacked good cause to <br>file anonymously because she signed an affidavit in her own name in another case with similar <br>allegations. The April 13 motion contains a “Certificate of Service” stating that it was served <br>on plaintiff’s counsel by e-mail on April 13.</code>                                                                            |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step  | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:----------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 1.0        | 3     | 0.6493                 | 0.6372                 | 0.5987                 | 0.5536                 | 0.4520                |
| 2.0        | 6     | 0.6685                 | 0.6514                 | 0.6208                 | 0.5916                 | 0.4859                |
| **2.7111** | **8** | **0.6715**             | **0.6608**             | **0.6225**             | **0.5932**             | **0.4854**            |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->