File size: 6,057 Bytes
110a69d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import torch
import numpy as np

from mobile_sam import sam_model_registry
from .onnx_image_encoder import ImageEncoderOnnxModel

import os
import argparse
import warnings

try:
    import onnxruntime  # type: ignore

    onnxruntime_exists = True
except ImportError:
    onnxruntime_exists = False

parser = argparse.ArgumentParser(
    description="Export the SAM image encoder to an ONNX model."
)

parser.add_argument(
    "--checkpoint",
    type=str,
    required=True,
    help="The path to the SAM model checkpoint.",
)

parser.add_argument(
    "--output", type=str, required=True, help="The filename to save the ONNX model to."
)

parser.add_argument(
    "--model-type",
    type=str,
    required=True,
    help="In ['default', 'vit_h', 'vit_l', 'vit_b']. Which type of SAM model to export.",
)

parser.add_argument(
    "--use-preprocess",
    action="store_true",
    help="Whether to preprocess the image by resizing, standardizing, etc.",
)

parser.add_argument(
    "--opset",
    type=int,
    default=17,
    help="The ONNX opset version to use. Must be >=11",
)

parser.add_argument(
    "--quantize-out",
    type=str,
    default=None,
    help=(
        "If set, will quantize the model and save it with this name. "
        "Quantization is performed with quantize_dynamic from onnxruntime.quantization.quantize."
    ),
)

parser.add_argument(
    "--gelu-approximate",
    action="store_true",
    help=(
        "Replace GELU operations with approximations using tanh. Useful "
        "for some runtimes that have slow or unimplemented erf ops, used in GELU."
    ),
)


def run_export(
    model_type: str,
    checkpoint: str,
    output: str,
    use_preprocess: bool,
    opset: int,
    gelu_approximate: bool = False,
):
    print("Loading model...")
    sam = sam_model_registry[model_type](checkpoint=checkpoint)

    onnx_model = ImageEncoderOnnxModel(
        model=sam,
        use_preprocess=use_preprocess,
        pixel_mean=[123.675, 116.28, 103.53],
        pixel_std=[58.395, 57.12, 57.375],
    )

    if gelu_approximate:
        for n, m in onnx_model.named_modules():
            if isinstance(m, torch.nn.GELU):
                m.approximate = "tanh"

    image_size = sam.image_encoder.img_size
    if use_preprocess:
        dummy_input = {
            "input_image": torch.randn((image_size, image_size, 3), dtype=torch.float)
        }
        dynamic_axes = {
            "input_image": {0: "image_height", 1: "image_width"},
        }
    else:
        dummy_input = {
            "input_image": torch.randn(
                (1, 3, image_size, image_size), dtype=torch.float
            )
        }
        dynamic_axes = None

    _ = onnx_model(**dummy_input)

    output_names = ["image_embeddings"]

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=torch.jit.TracerWarning)
        warnings.filterwarnings("ignore", category=UserWarning)
        print(f"Exporting onnx model to {output}...")
        if model_type == "vit_h":
            output_dir, output_file = os.path.split(output)
            os.makedirs(output_dir, mode=0o777, exist_ok=True)
            torch.onnx.export(
                onnx_model,
                tuple(dummy_input.values()),
                output,
                export_params=True,
                verbose=False,
                opset_version=opset,
                do_constant_folding=True,
                input_names=list(dummy_input.keys()),
                output_names=output_names,
                dynamic_axes=dynamic_axes,
            )
        else:
            with open(output, "wb") as f:
                torch.onnx.export(
                    onnx_model,
                    tuple(dummy_input.values()),
                    f,
                    export_params=True,
                    verbose=False,
                    opset_version=opset,
                    do_constant_folding=True,
                    input_names=list(dummy_input.keys()),
                    output_names=output_names,
                    dynamic_axes=dynamic_axes,
                )

    if onnxruntime_exists:
        ort_inputs = {k: to_numpy(v) for k, v in dummy_input.items()}
        providers = ["CPUExecutionProvider"]

        if model_type == "vit_h":
            session_option = onnxruntime.SessionOptions()
            ort_session = onnxruntime.InferenceSession(output, providers=providers)
            param_file = os.listdir(output_dir)
            param_file.remove(output_file)
            for i, layer in enumerate(param_file):
                with open(os.path.join(output_dir, layer), "rb") as fp:
                    weights = np.frombuffer(fp.read(), dtype=np.float32)
                    weights = onnxruntime.OrtValue.ortvalue_from_numpy(weights)
                    session_option.add_initializer(layer, weights)
        else:
            ort_session = onnxruntime.InferenceSession(output, providers=providers)

        _ = ort_session.run(None, ort_inputs)
        print("Model has successfully been run with ONNXRuntime.")


def to_numpy(tensor):
    return tensor.cpu().numpy()


if __name__ == "__main__":
    args = parser.parse_args()
    run_export(
        model_type=args.model_type,
        checkpoint=args.checkpoint,
        output=args.output,
        use_preprocess=args.use_preprocess,
        opset=args.opset,
        gelu_approximate=args.gelu_approximate,
    )

    if args.quantize_out is not None:
        assert onnxruntime_exists, "onnxruntime is required to quantize the model."
        from onnxruntime.quantization import QuantType  # type: ignore
        from onnxruntime.quantization.quantize import quantize_dynamic  # type: ignore

        print(f"Quantizing model and writing to {args.quantize_out}...")
        quantize_dynamic(
            model_input=args.output,
            model_output=args.quantize_out,
            optimize_model=True,
            per_channel=False,
            reduce_range=False,
            weight_type=QuantType.QUInt8,
        )
        print("Done!")