File size: 8,438 Bytes
94e3a08 c8448b1 986d6c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
---
license: apache-2.0
datasets:
- Toygar/turkish-offensive-language-detection
language:
- tr
metrics:
- f1
- accuracy
library_name: transformers
pipeline_tag: text-classification
---
# kitapmetre-AbraMuhara
## Bu proje TEKNOFEST Doğal Dil İşleme Yarışması için yapılmıştır.
(https://www.teknofest.org/tr/yarismalar/turkce-dogal-dil-isleme-yarismasi/)
## Takım Bilgileri:
![Takım logosu](https://github.com/Abra-Muhara/kitapmetre-2024AcikHackTDDI/blob/main/additionalImages/ABRA%20MUHARA.png)
Takım Adı: Abra Muhara
Takım ID: #561838
Başvuru ID: #2290264
Hugging Face: https://huggingface.co/AbraMuhara
Github: https://github.com/Abra-Muhara
Demo Videonun Linki: https://youtu.be/9p1tD68zZGM?si=8WPXhtJwMStNfqwl
## Takım üyeleri:
Fatih Kürşat Cansu(Danışman)
Şuayp Talha Kocabay(Kaptan): https://github.com/suayptalha
Mehmet Kağan Albayrak(Üye): https://github.com/TFLkedimestan
## Projemizin Aşamaları:
Projemizin hedefi:
Sisteme atılan kitabın yaş aralığını **0-8, 8-12, 12-15, 15-18 ve 18+** olarak sınıflandırması ve kullanıcıya kitap hakkında birçok veriyi bildirmesi.
Projemizin Aşamaları:
1. Uygulama aracılığıyla kullanıcıdan kitap PDF'inin alınması ve bu PDF'in metine çevrilmesi.
2. İnce ayar yapılmış **BERTURK** ile cümleleri uygunsuzluklarına göre sınıflandırması.
3. **Kendi yazdığımız kelime listesi** ile kelimeleri uygunsuzluklarına göre sınıflandırması.
4. İlk 2 aşamada elde ettiğimiz verilerin yanı sıra kitapların cümle sayısı, hece sayısı, cümle başına ortalama kelime sayısı, cümle başına ortalama hece sayısı, Ateşman OP(Okunabilirlik Puanı), uygunsuz cümle sayısı, uygunsuz cümle sayısının toplam cümle sayısına oranı, uygunsuz cümle yüzdesi, uygunsuz kelime sayısı, uygunsuz kelime sayısının toplam kelime sayısına oranı, uygunsuz kelime sayısının uygunsuz olmayan kelime sayısına oranı, FRES puanı, Çetinkaya Uzun okunulabilirlik puanı ve ortalama cümle uygunsuzluk değeri ile yaş aralığı sınıflandırması yapılması.
5. Uygulama aracılığıyla kullanıcıya kitap hakkında elde edilen verilerin bildirilmesi.
## Veri Seti ve Araçlar
### Uygunsuzluk Modeli Veri Seti
**kaggle.com/datasets/toygarr/turkish-offensive-language-detection**
Bu proje için 2 adet veri seti kullanılmıştır. Bunlardan biri Kaggle’dan alınmış olup kullanıcıların Twitter üzerinde paylaştığı ve ‘‘ofansif’’ veya ‘‘ofansif değil’’ olarak sınıflandırılan gönderilerin bulunduğu bir veri setidir. Bu veri setiyle metinlerin ofansif olup olmadığını bulan bir model oluşturulmuştur.
İçerisinde;
•42.398 adet eğitim verisi,
•8.851 adet test verisi,
•1.756 adet doğrulama verisi bulunmaktadır.
![Veri Seti Veri Dağılımı](https://github.com/Abra-Muhara/kitapmetre-2024AcikHackTDDI/blob/main/additionalImages/set-dagilim.png)
Veri Seti Veri Dağılımı
![Eğitim Seti Veri Dağılımı](https://github.com/Abra-Muhara/kitapmetre-2024AcikHackTDDI/blob/main/additionalImages/egitim_set.png)
Eğitim Seti Veri Dağılımı
![Test Seti Veri Dağılımı](https://github.com/Abra-Muhara/kitapmetre-2024AcikHackTDDI/blob/main/additionalImages/test_set.png)
Test Seti Veri Dağılımı
![Doğrulama Seti Veri Dağılımı](https://github.com/Abra-Muhara/kitapmetre-2024AcikHackTDDI/blob/main/additionalImages/valid_set.png)
Doğrulama Seti Veri Dağılımı
### Uygunsuzluk Modelleri
Metinlerin uygunsuzluğunu ölçen model için çeşitli mimariler kullanılmıştır.
Bunlar:
•ANN:
Bahsi geçen modellerden ilki olan ve metinlerin uygunsuzluk düzeylerini ölçen model için farklı mimariler kullanan 4 model oluşturulmuştur. Bunlar BERT, BERT-Turkish, RNN ve kendimizin oluşturduğu bir ANN modelidir.
İlk olarak deneme amaçlı bir ANN oluşturup eğiterek %89,42 doğrulukla ve 0.3972 loss ile çalıştığına ulaşıldı. Fakat büyük veya karmaşık bağlamlı metinlerde sorun çıkarttığı için bu model kullanılmamıştır.
![Modelin Hiperparametreleri](https://github.com/Abra-Muhara/kitapmetre-2024AcikHackTDDI/blob/main/additionalImages/ann.png)
•RNN:
Ardından 4 GRU (Geçitli Tekrarlayan Birim) katmanlı bir RNN (Yinelemeli Sinir Ağı) oluşturulmuştur. Optimizasyon algoritması olarak aşırı öğrenmeyi azaltıp daha hızlı ve kararlı öğrenme sağlayan AdamW kullanılmıştır. İlk olarak 4 epoch’a kadar eğitilmiştir. Ardından Early Stopping kullanılmış ve 6. epoch’ta loss arttığı için eğitim durdurulmuştur. Model %89,83 doğrulukla çalışmaktadır. Ancak BERT ile yapılan model daha yüksek doğrulukla çalıştığı için bu modeli kullanılmamıştır.
![Modelin Hiperparametreleri](https://github.com/Abra-Muhara/kitapmetre-2024AcikHackTDDI/blob/main/additionalImages/rnn.png)
![Çeşitli Epoch Değerlerinde RNN Modelinin Doğruluk Değerleri](https://github.com/Abra-Muhara/kitapmetre-2024AcikHackTDDI/blob/main/additionalImages/accuracy.png)
![Çeşitli Epoch Değerlerinde RNN Modelinin Kayıp Değerleri](https://github.com/Abra-Muhara/kitapmetre-2024AcikHackTDDI/blob/main/additionalImages/loss.png)
•BERT:
**"bert-base-uncased"**
Ardından BERT ile fine-tuning kullanarak yeni bir model oluşturulmuştur. Bu model ilk olarak 3 epoch ile ardından 5 epoch ile eğitilmiş fakat doğruluğun artmamasından dolayı 3 epoch kullanan model tercih edilmiştir. Optimizasyon algoritması olarak tekrardan AdamW kullanılmıştır. Model’in f1 doğruluğu %91’dir. Fakat BERT-Turkish ile yapılan modelin doğruluğu daha yüksek olduğu için tercih edilmemiştir.
![Modelin Değerlendirmesi](https://github.com/Abra-Muhara/kitapmetre-2024AcikHackTDDI/blob/main/additionalImages/bert-accuracy.png)
![Modelin Hiperparametreleri](https://github.com/Abra-Muhara/kitapmetre-2024AcikHackTDDI/blob/main/additionalImages/bert-param.png)
•BERT-Turkish:
**"dbmdz/bert-base-turkish-128k-uncased"**
Ardından BERT-Turkish ile fine-tuning kullanarak yeni bir model oluşturuldu. BERT-Turkish, Kemal Oflazer tarafından 128k’lık bir kelime haznesi ile BERT’in üzerine eğitilen bir modeldir. Optimizasyon algoritması olarak tekrardan AdamW kullanılmıştır. Model’in f1 doğruluğu %93’dir. En yüksek doğruluğa sahip model olmasından dolayı uygunsuzluk modeli olarak bu model kullanılmıştır.
![Modelin Değerlendirmesi](https://github.com/Abra-Muhara/kitapmetre-2024AcikHackTDDI/blob/main/additionalImages/bert-tr-accuracy.png)
![Modelin Hiperparametreleri](https://github.com/Abra-Muhara/kitapmetre-2024AcikHackTDDI/blob/main/additionalImages/bert-tr-params.png)
Bu modellerin doğrulukları aşağıdadır.
![Farklı Model Mimarilerinde Uygunsuzluk Modelinin Doğruluk Değerleri](https://github.com/Abra-Muhara/kitapmetre-2024AcikHackTDDI/blob/main/additionalImages/offensive-accuracies.png)
## Fast-API
Projenin sonunda elde ettiğimiz modelin kullanıcıların daha kolay erişilmesi adına modelimizi Fast-API ile Hugging Face Space ortamına yükledik. Modelleri indirmenize gerek kalmadan (https://abramuhara-fast-api.hf.space) üzerinden istedikleri verileri alabilirler. Sonuçları alma sırasında yapmaları gereken:
1. Uygunsuzluğunu ölçmek istediğiniz bir cümle var ise tek yapmanız gereken (https://abramuhara-fast-api.hf.space/predict/) sayfasına parametreniz {'text': cümle} şeklinde post yapmanızdır. Cevap olarak {'prediction': 0 ise uygun, 1 ise uygun değil} döndürecek.
2. Tabular verilerini elde ettiğiniz kitabınızın yaş aralığını bulmak isterseniz tek yapmanız gereken verilerinizi örnek veri setindeki sütunlar şeklinde sıralamanız ve (https://abramuhara-fast-api.hf.space/predict-age/) sayfasına parametreniz {'features': list[Float]}
olacak şekilde göndermenizdir. Cevap olarak {"age_group": yazı şeklinde yaş kategorisi} gönderilecektir.
## Kaynakçalar:
ATEŞMAN, Ender. (1997). Türkçe’de okunabilirliğin Ölçülmesi. A.Ü. Tömer Dil Dergisi, sayı:58,s.171-174.
Cetinkaya, B. (2008). Türkçe Metinlerde Okunabilirlik Analizi.
Flesch, R. (1948). A New Readability Yardstick. Journal of Applied Psychology, 32(3), 221-233. https://doi.org/10.1037/h0057532 |