File size: 1,703 Bytes
460f292 89d63a0 460f292 89d63a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
language:
- ar
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- arabic_speech_corpus
model-index:
- name: Whisper Medium Arabic
results: []
metrics:
- wer
library_name: transformers
pipeline_tag: automatic-speech-recognition
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/abdelrahmanabosteet/Graduation_project/runs/uszjncge)
# Whisper Medium Arabic
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Arabic Speech Corpus dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0794
- eval_wer: 5.4226
- eval_runtime: 200.1714
- eval_samples_per_second: 0.5
- eval_steps_per_second: 0.5
- epoch: 5.7143
- step: 250
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400
### Framework versions
- Transformers 4.41.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |