File size: 12,484 Bytes
b4bf53e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# -*- coding: utf-8 -*-
"""
Created on Wed Jun  1 00:59:49 2022

@author: Abinash.m
"""
import datetime as dt
import streamlit as st
import numpy as np
import pandas as pd
from ThymeBoost import ThymeBoost as tb
import pmdarima as pm
import numpy as np
from sklearn.metrics import mean_absolute_error, mean_squared_error,r2_score,mean_absolute_percentage_error
from statsmodels.tsa.stattools import adfuller,acf, pacf
from math import sqrt
import base64
from prophet import Prophet
from prophet.diagnostics import performance_metrics
from prophet.diagnostics import cross_validation
from prophet.plot import plot_cross_validation_metric
from statsmodels.tsa.stattools import kpss
from pmdarima import pipeline
from pmdarima import model_selection
from pmdarima import preprocessing as ppc
from pmdarima import arima
import matplotlib.pyplot as plt
from pmdarima.arima import auto_arima
import statsmodels.api as sm
import itertools
#from ThymeBoost import ThymeBoost as tb
from pmdarima.arima import AutoARIMA
from datetime import datetime
from math import sqrt
#----------------------------------------GETTING DATA------------------------------------------------
def get_df(data):
  custom_date_parser = lambda x: datetime.strptime(x, "%Y-%m-%d")
  extension = data.name.split('.')[1]
  if extension.upper() == 'CSV':
    df = pd.read_csv(data,index_col=0,squeeze=True,parse_dates=True,
                     date_parser=custom_date_parser,
                     infer_datetime_format=True,dayfirst=True)
  elif extension.upper() == 'XLSX':
    df = pd.read_excel(data, engine='openpyxl')
  elif extension.upper() == 'PICKLE':
    df = pd.read_pickle(data) 
  return df

#-----------------------------------MODEL1-------------------------------------------------------


def arima(df,train,test):
    model=auto_arima(train,start_p=0,d=1,start_q=0,
          max_p=5,max_d=5,max_q=5, start_P=0,
          D=1, start_Q=0, max_P=5,max_D=5,
          max_Q=5, m=12, seasonal=True,
          error_action='warn',trace=True,
          supress_warnings=True,stepwise=True,
          random_state=20,n_fits=50)
    prediction = pd.DataFrame(model.predict(n_periods = len(test)),index=test.index)
    prediction.columns = ['predicted_data']
    test['predicted_data'] = prediction
    mse = np.square(np.subtract(test.iloc[:,0],test['predicted_data'])).mean()
    rmse = sqrt(mse)
    #rmse= sqrt(mean_squared_error(test.iloc[:,0], test['predicted_data']))
    r2_scor =r2_score(test.iloc[:,0],test['predicted_data'])
    r2_scor =r2_scor*100
    mae =mean_absolute_error(test.iloc[:,0],test['predicted_data'])
    mape =mean_absolute_percentage_error(test.iloc[:,0],test['predicted_data'])
    mape = mape*100
    #st.write(rmse)
    #st.write(r2_scor)
    #st.write(mae)
    #st.write(mape)
    
    
    x =df.index[-1]
    rng = pd.date_range(x, periods=25, freq='M')
    pred = pd.DataFrame(model.predict(n_periods = 25),index=rng)
    #future= model.predict(n_periods=43, typ='linear')
    #pred = pd.DataFrame({ 'Date': rng, 'ARIMA': future})
    #st.table(pred)
    
    return rmse,r2_scor,mae,mape,pred


#-----------------------------------MODEL2---------------------------------------------------------



def sarima(df):
    train = df[:int(len(df)*.75)]
    test = df[int(len(df)*.75):]
    p = d = q = range(0, 1)
    pdq = list(itertools.product(p, d, q))
    seasonal_pdq = [(x[0], x[1], x[2], 12) for x in list(itertools.product(p, d, q))]
    order =[]
    for param in pdq:
        for param_seasonal in seasonal_pdq:
            try:
                mod = sm.tsa.statespace.SARIMAX(df,order=param,seasonal_order=param_seasonal,enforce_stationarity=False,enforce_invertibility=False)
                results = mod.fit()
                order.append((param,param_seasonal,results.aic))
                #print('ARIMA{}x{}12 - AIC:{}'.format(param,param_seasonal,results.aic))
                #st.write(results.aic)
            except: 
                continue
    order_df = pd.DataFrame(order,columns=['Order','Seasonal_order','AIC'])
    order_df =order_df.sort_values('AIC')
    pdq_order = order_df['Order'].iloc[0]
    seasonal = order_df['Seasonal_order'].iloc[0]
    mod = sm.tsa.statespace.SARIMAX(df,
                                order=(0, 0, 1),
                                seasonal_order=(1, 1, 1, 12),
                                enforce_stationarity=False,
                                enforce_invertibility=False)
    sarima = mod.fit()
    pred = sarima.get_prediction(start=len(train), dynamic=False)
    pred_ci = pred.conf_int()
    y_pred = pred.predicted_mean
    y_pred = pd.DataFrame(y_pred)
    #mse = mean_squared_error(test, y_pred)
    #rmse =sqrt(mse)
    mse = np.square(np.subtract(test,y_pred)).mean()
    rmse = sqrt(mse)
    r2_scor =r2_score(test,y_pred)
    
    mae =mean_absolute_error(test,y_pred)
    mape =mean_absolute_percentage_error(test, y_pred)
    mape = mape*100
    #pred_uc = sarima.get_forecast(steps=12)
    #pred_ci = pred_uc.conf_int()
    x =df.index[-1]
    rng = pd.date_range(x, periods=25, freq='M')
    pred_uc = sarima.get_forecast(steps=25)
    
    pred_ci = pred_uc.conf_int()
    forecast = pred_uc.predicted_mean
    #pred = pd.DataFrame(forecast,index=rng)
    pred = pd.DataFrame({ 'Date': rng, 'ARIMA': forecast})

    
    #st.write(pred_ci)
    #st.write(rmse)
    #st.write(r2_scor)
    #st.write(mae)
    #st.write(mape)
    #st.write(pred)
    return rmse,r2_scor,mae,mape,pred
#---------------------------------------MODEL 3---------------------------------------------------------
def auto_model(df):
    size = round(int(len(df)*.80))
    train, test = model_selection.train_test_split(df.iloc[:,0], train_size=size)
    
    # Let's create a pipeline with multiple stages... the Wineind dataset is
    # seasonal, so we'll include a FourierFeaturizer so we can fit it without
    # seasonality
    pipe = pipeline.Pipeline([
        ("fourier", ppc.FourierFeaturizer(m=12, k=4)),
        ("arima", AutoARIMA(stepwise=True, trace=1, error_action="ignore",
                                  seasonal=False,  # because we use Fourier
                                  suppress_warnings=True))
    ])
    
    pipe.fit(df)
    x =df.index[-1]
    rng = pd.date_range(x, periods=25, freq='M')
    preds, conf_int = pipe.predict(n_periods=25, return_conf_int=True)
    
    auto_pred=pd.DataFrame(preds)
    m=pd.DataFrame(conf_int)
    auto_pred['Upper Bound'] = m.iloc[:,1]
    auto_pred['Lower Bound'] = m.iloc[:,0]
    pred = pd.DataFrame({ 'Date': rng, 'Forecast value': preds})
    pred = pd.DataFrame(pred)
    pred = pred.set_index('Date')
    return pred



#---------------------------------------MODEL 4----------------------------------------------------------
def enhanced_auto_ml_model(df):
    
    if df is not None:
        df.columns=['ds','y']
        df['ds'] = pd.to_datetime(df['ds'],errors='coerce') 
        
        
        
        max_date = df['ds'].max()
        #st.write(max_date)
    
    periods_input = 25
    
    if df is not None:
        m = Prophet()
        m.fit(df)

    if df is not None:
        future = m.make_future_dataframe(periods=periods_input,freq ='M')
        
        forecast = m.predict(future)
        fcst = forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']]
    
        fcst_filtered =  fcst[fcst['ds'] > max_date]    
        #st.write(fcst_filtered)
        metric_df = fcst.set_index('ds')[['yhat']].join(df.set_index('ds').y).reset_index()
        metric_df.dropna(inplace=True)
       
        #mse = mean_squared_error(metric_df.y, metric_df.yhat)
        #rmse =sqrt(mse)
        mse = np.square(np.subtract(metric_df.y,metric_df.yhat)).mean()
        rmse = sqrt(mse)
        r2_scor =r2_score(metric_df.y, metric_df.yhat)
        
        mae =mean_absolute_error(metric_df.y, metric_df.yhat)
        mape =mean_absolute_percentage_error(metric_df.y, metric_df.yhat)
        mape = mape*100
        pred = pd.DataFrame(fcst_filtered)
        pred = pred.set_index('ds')
        
    
    return rmse,r2_scor,mae,mape,pred
#---------------------------------------MODEL 5-------------------------------------------------------
def enhanced_arima_model(df,train,test):
    boosted_model = tb.ThymeBoost(verbose=0)
    model = boosted_model.autofit(train.iloc[:,0],
                               seasonal_period=0)
    predicted_output = boosted_model.predict(model, forecast_horizon=len(train))
    mse = mean_squared_error(train.iloc[:,0], predicted_output['predictions'])
    rmse =sqrt(mse)
    r2_scor =r2_score(train.iloc[:,0], predicted_output['predictions'])
    
    mae =mean_absolute_error(train.iloc[:,0], predicted_output['predictions'])
    mape =mean_absolute_percentage_error(train.iloc[:,0], predicted_output['predictions'])
    mape = mape*100
    boosted_model1 = tb.ThymeBoost(verbose=0)
    model1 = boosted_model1.autofit(df.iloc[:,0],
                               seasonal_period=12)
    x =df.index[-1]
    rng = pd.date_range(x, periods=25, freq='M')
    predicted_output1 = boosted_model1.predict(model1, forecast_horizon=len(rng))

    return rmse,r2_scor,mae,mape,predicted_output1
#---------------------------------------DOWNLOAD THE FILE----------------------------------------
def download(df):
    csv_exp = df.to_csv(index=True)
    # When no file name is given, pandas returns the CSV as a string, nice.
    b64 = base64.b64encode(csv_exp.encode()).decode()  # some strings <-> bytes conversions necessary here
    href = f'<a href="data:file/csv;base64,{b64}">Download CSV File</a> (right-click and save as ** &lt;forecast_name&gt;.csv**)'
    st.markdown(href, unsafe_allow_html=True)
    #st.table(df)
#---------------------------------------MAIN BLOCK-------------------------------------------------------  
def main():
    st.header('Upload the data with date column')
    data = st.file_uploader("Upload file", type=['csv' ,'xlsx','pickle'])
    if not data:
      st.write("Upload a .csv or .xlsx file to get started")
      return
    df =get_df(data)
    #pro = get_df1(data)
    df =pd.DataFrame(df)
    cols = st.selectbox(
       'Please select a column',df.columns.tolist())
    df = df[cols]
    #pro = pro[cols]
    df =pd.DataFrame(df)
    #pro = df.copy()
    #df= pd.to_datetime(df.index,infer_datetime_format=True,format='%Y-%m-%d',exact=True)
    pred = df.copy()
    pred = pred.reset_index()
    #pred= pd.to_datetime(pred.iloc[:,0],infer_datetime_format=True,format='%Y-%m-%d',exact=True)
    train = df[:int(len(df)*.75)]
    test = df[int(len(df)*.75):]
    model1 = arima(df,train,test)
    model2 =sarima(df)
    model3 =enhanced_auto_ml_model(pred)
    #model5=enhanced_arima_model(df, train,test)
    model4 = auto_model(df)
    my_dict ={'RMSE':[model1[0],model2[0],model3[0]],
              'R2_SCORE':[model1[1],model2[1],model3[1]],
              'MAE':[model1[2],model2[2],model3[2]],
              'MAPE':[model1[3],model2[3],model3[3]]
             }
    my_df=pd.DataFrame(my_dict,index=['ARIMA','SARIMA','ENHANCED AUTO ML MODEL'])
    st.subheader('EVALUATION METRICS')
    st.table(my_df)
    
    #st.subheader('Auto_arima')
    #model(df, train, test)
    #st.subheader('SARIMAX')
    #auto(df)
    #st.subheader('MODEL 4')
    #prophet(pred)
    #st.subheader('MODEL 1')
    #st.table(model1[4])
    #st.subheader('MODEL 2')
    #st.table(model2[4])
    #st.table(df)
    
 #   if model5[3]<float(20):
  #      st.write('ENHANCED ARIMA MODEL is the best model for the dataset ')
   #     #csv_exp = model5[4].to_csv(index=True)
    #    download(model5[4])
     #   st.line_chart(model5[4].iloc[:,0])
      #  st.balloons()
        
    if model3[3]<float(20):
        st.write('ENHANCED AUTO ML MODEL is the best model for the dataset ')
        download(model3[4])
        
        st.line_chart(model3[4].iloc[:,0])
        st.balloons()

    elif model2[3]<float(20):
        st.write('SARIMA MODEL is the best model for the dataset ')
        download(model2[4])
        st.line_chart(model2[4].iloc[:,1])
        st.balloons()
    elif model1[3]<float(20):
        st.write('ARIMA MODEL is the best model for the dataset ')
        download(model1[4])
        st.line_chart(model1[4].iloc[:,0])
        st.balloons()
        
    else:
        st.write('ARIMA MODEL WITH PIPELINE   is the best model for the dataset ')
        download(model4[4]) 
        st.line_chart(model4.iloc[:,0])
        st.balloons()
        
        
main()