File size: 2,065 Bytes
737e07c 4f69b7d 737e07c 4f69b7d be8fc8a 737e07c 4f69b7d be8fc8a 4f69b7d 737e07c be8fc8a 737e07c be8fc8a 737e07c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- resumes_t2json
metrics:
- rouge
model-index:
- name: t5-base-finetuned-xsum
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: resumes_t2json
type: resumes_t2json
config: default
split: validation
args: default
metrics:
- name: Rouge1
type: rouge
value: 5.7966
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base-finetuned-xsum
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the resumes_t2json dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5861
- Rouge1: 5.7966
- Rouge2: 3.5884
- Rougel: 5.7799
- Rougelsum: 5.7839
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 1.2507 | 1.0 | 877 | 0.5862 | 5.7975 | 3.5884 | 5.7804 | 5.7847 | 19.0 |
| 0.7138 | 2.0 | 1754 | 0.5861 | 5.7966 | 3.5884 | 5.7799 | 5.7839 | 19.0 |
| 0.7176 | 3.0 | 2631 | 0.5861 | 5.7966 | 3.5884 | 5.7799 | 5.7839 | 19.0 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
|