File size: 2,065 Bytes
737e07c
 
 
 
 
4f69b7d
 
 
737e07c
 
4f69b7d
 
 
 
 
 
 
 
 
 
 
 
 
be8fc8a
737e07c
 
 
 
 
 
 
4f69b7d
 
be8fc8a
 
 
 
 
4f69b7d
737e07c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be8fc8a
737e07c
 
 
 
 
 
be8fc8a
 
 
737e07c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- resumes_t2json
metrics:
- rouge
model-index:
- name: t5-base-finetuned-xsum
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: resumes_t2json
      type: resumes_t2json
      config: default
      split: validation
      args: default
    metrics:
    - name: Rouge1
      type: rouge
      value: 5.7966
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-base-finetuned-xsum

This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the resumes_t2json dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5861
- Rouge1: 5.7966
- Rouge2: 3.5884
- Rougel: 5.7799
- Rougelsum: 5.7839
- Gen Len: 19.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 1.2507        | 1.0   | 877  | 0.5862          | 5.7975 | 3.5884 | 5.7804 | 5.7847    | 19.0    |
| 0.7138        | 2.0   | 1754 | 0.5861          | 5.7966 | 3.5884 | 5.7799 | 5.7839    | 19.0    |
| 0.7176        | 3.0   | 2631 | 0.5861          | 5.7966 | 3.5884 | 5.7799 | 5.7839    | 19.0    |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2