File size: 17,970 Bytes
7e50900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
#pragma once

#include <complex>

#include <c10/macros/Macros.h>

#if defined(__CUDACC__) || defined(__HIPCC__)
#include <thrust/complex.h>
#endif

C10_CLANG_DIAGNOSTIC_PUSH()
#if C10_CLANG_HAS_WARNING("-Wimplicit-float-conversion")
C10_CLANG_DIAGNOSTIC_IGNORE("-Wimplicit-float-conversion")
#endif
#if C10_CLANG_HAS_WARNING("-Wfloat-conversion")
C10_CLANG_DIAGNOSTIC_IGNORE("-Wfloat-conversion")
#endif

namespace c10 {

// c10::complex is an implementation of complex numbers that aims
// to work on all devices supported by PyTorch
//
// Most of the APIs duplicates std::complex
// Reference: https://en.cppreference.com/w/cpp/numeric/complex
//
// [NOTE: Complex Operator Unification]
// Operators currently use a mix of std::complex, thrust::complex, and
// c10::complex internally. The end state is that all operators will use
// c10::complex internally.  Until then, there may be some hacks to support all
// variants.
//
//
// [Note on Constructors]
//
// The APIs of constructors are mostly copied from C++ standard:
//   https://en.cppreference.com/w/cpp/numeric/complex/complex
//
// Since C++14, all constructors are constexpr in std::complex
//
// There are three types of constructors:
// - initializing from real and imag:
//     `constexpr complex( const T& re = T(), const T& im = T() );`
// - implicitly-declared copy constructor
// - converting constructors
//
// Converting constructors:
// - std::complex defines converting constructor between float/double/long
// double,
//   while we define converting constructor between float/double.
// - For these converting constructors, upcasting is implicit, downcasting is
//   explicit.
// - We also define explicit casting from std::complex/thrust::complex
//   - Note that the conversion from thrust is not constexpr, because
//     thrust does not define them as constexpr ????
//
//
// [Operator =]
//
// The APIs of operator = are mostly copied from C++ standard:
//   https://en.cppreference.com/w/cpp/numeric/complex/operator%3D
//
// Since C++20, all operator= are constexpr. Although we are not building with
// C++20, we also obey this behavior.
//
// There are three types of assign operator:
// - Assign a real value from the same scalar type
//   - In std, this is templated as complex& operator=(const T& x)
//     with specialization `complex& operator=(T x)` for float/double/long
//     double Since we only support float and double, on will use `complex&
//     operator=(T x)`
// - Copy assignment operator and converting assignment operator
//   - There is no specialization of converting assignment operators, which type
//   is
//     convertible is solely dependent on whether the scalar type is convertible
//
// In addition to the standard assignment, we also provide assignment operators
// with std and thrust
//
//
// [Casting operators]
//
// std::complex does not have casting operators. We define casting operators
// casting to std::complex and thrust::complex
//
//
// [Operator ""]
//
// std::complex has custom literals `i`, `if` and `il` defined in namespace
// `std::literals::complex_literals`. We define our own custom literals in the
// namespace `c10::complex_literals`. Our custom literals does not follow the
// same behavior as in std::complex, instead, we define _if, _id to construct
// float/double complex literals.
//
//
// [real() and imag()]
//
// In C++20, there are two overload of these functions, one it to return the
// real/imag, another is to set real/imag, they are both constexpr. We follow
// this design.
//
//
// [Operator +=,-=,*=,/=]
//
// Since C++20, these operators become constexpr. In our implementation, they
// are also constexpr.
//
// There are two types of such operators: operating with a real number, or
// operating with another complex number. For the operating with a real number,
// the generic template form has argument type `const T &`, while the overload
// for float/double/long double has `T`. We will follow the same type as
// float/double/long double in std.
//
// [Unary operator +-]
//
// Since C++20, they are constexpr. We also make them expr
//
// [Binary operators +-*/]
//
// Each operator has three versions (taking + as example):
// - complex + complex
// - complex + real
// - real + complex
//
// [Operator ==, !=]
//
// Each operator has three versions (taking == as example):
// - complex == complex
// - complex == real
// - real == complex
//
// Some of them are removed on C++20, but we decide to keep them
//
// [Operator <<, >>]
//
// These are implemented by casting to std::complex
//
//
//
// TODO(@zasdfgbnm): c10::complex<c10::Half> is not currently supported,
// because:
//  - lots of members and functions of c10::Half are not constexpr
//  - thrust::complex only support float and double

template <typename T>
struct alignas(sizeof(T) * 2) complex {
  using value_type = T;

  T real_ = T(0);
  T imag_ = T(0);

  constexpr complex() = default;
  C10_HOST_DEVICE constexpr complex(const T& re, const T& im = T())
      : real_(re), imag_(im) {}
  template <typename U>
  explicit constexpr complex(const std::complex<U>& other)
      : complex(other.real(), other.imag()) {}
#if defined(__CUDACC__) || defined(__HIPCC__)
  template <typename U>
  explicit C10_HOST_DEVICE complex(const thrust::complex<U>& other)
      : real_(other.real()), imag_(other.imag()) {}
// NOTE can not be implemented as follow due to ROCm bug:
//   explicit C10_HOST_DEVICE complex(const thrust::complex<U> &other):
//   complex(other.real(), other.imag()) {}
#endif

  // Use SFINAE to specialize casting constructor for c10::complex<float> and
  // c10::complex<double>
  template <typename U = T>
  C10_HOST_DEVICE explicit constexpr complex(
      const std::enable_if_t<std::is_same<U, float>::value, complex<double>>&
          other)
      : real_(other.real_), imag_(other.imag_) {}
  template <typename U = T>
  C10_HOST_DEVICE constexpr complex(
      const std::enable_if_t<std::is_same<U, double>::value, complex<float>>&
          other)
      : real_(other.real_), imag_(other.imag_) {}

  constexpr complex<T>& operator=(T re) {
    real_ = re;
    imag_ = 0;
    return *this;
  }

  constexpr complex<T>& operator+=(T re) {
    real_ += re;
    return *this;
  }

  constexpr complex<T>& operator-=(T re) {
    real_ -= re;
    return *this;
  }

  constexpr complex<T>& operator*=(T re) {
    real_ *= re;
    imag_ *= re;
    return *this;
  }

  constexpr complex<T>& operator/=(T re) {
    real_ /= re;
    imag_ /= re;
    return *this;
  }

  template <typename U>
  constexpr complex<T>& operator=(const complex<U>& rhs) {
    real_ = rhs.real();
    imag_ = rhs.imag();
    return *this;
  }

  template <typename U>
  constexpr complex<T>& operator+=(const complex<U>& rhs) {
    real_ += rhs.real();
    imag_ += rhs.imag();
    return *this;
  }

  template <typename U>
  constexpr complex<T>& operator-=(const complex<U>& rhs) {
    real_ -= rhs.real();
    imag_ -= rhs.imag();
    return *this;
  }

  template <typename U>
  constexpr complex<T>& operator*=(const complex<U>& rhs) {
    // (a + bi) * (c + di) = (a*c - b*d) + (a * d + b * c) i
    T a = real_;
    T b = imag_;
    U c = rhs.real();
    U d = rhs.imag();
    real_ = a * c - b * d;
    imag_ = a * d + b * c;
    return *this;
  }

#ifdef __APPLE__
#define FORCE_INLINE_APPLE __attribute__((always_inline))
#else
#define FORCE_INLINE_APPLE
#endif
  template <typename U>
  constexpr FORCE_INLINE_APPLE complex<T>& operator/=(const complex<U>& rhs)
      __ubsan_ignore_float_divide_by_zero__ {
    // (a + bi) / (c + di) = (ac + bd)/(c^2 + d^2) + (bc - ad)/(c^2 + d^2) i
    T a = real_;
    T b = imag_;
    U c = rhs.real();
    U d = rhs.imag();
    auto denominator = c * c + d * d;
    real_ = (a * c + b * d) / denominator;
    imag_ = (b * c - a * d) / denominator;
    return *this;
  }
#undef FORCE_INLINE_APPLE

  template <typename U>
  constexpr complex<T>& operator=(const std::complex<U>& rhs) {
    real_ = rhs.real();
    imag_ = rhs.imag();
    return *this;
  }

#if defined(__CUDACC__) || defined(__HIPCC__)
  template <typename U>
  C10_HOST_DEVICE complex<T>& operator=(const thrust::complex<U>& rhs) {
    real_ = rhs.real();
    imag_ = rhs.imag();
    return *this;
  }
#endif

  template <typename U>
  explicit constexpr operator std::complex<U>() const {
    return std::complex<U>(std::complex<T>(real(), imag()));
  }

#if defined(__CUDACC__) || defined(__HIPCC__)
  template <typename U>
  C10_HOST_DEVICE explicit operator thrust::complex<U>() const {
    return static_cast<thrust::complex<U>>(thrust::complex<T>(real(), imag()));
  }
#endif

  // consistent with NumPy behavior
  explicit constexpr operator bool() const {
    return real() || imag();
  }

  C10_HOST_DEVICE constexpr T real() const {
    return real_;
  }
  constexpr void real(T value) {
    real_ = value;
  }
  constexpr T imag() const {
    return imag_;
  }
  constexpr void imag(T value) {
    imag_ = value;
  }
};

namespace complex_literals {

constexpr complex<float> operator"" _if(long double imag) {
  return complex<float>(0.0f, static_cast<float>(imag));
}

constexpr complex<double> operator"" _id(long double imag) {
  return complex<double>(0.0, static_cast<double>(imag));
}

constexpr complex<float> operator"" _if(unsigned long long imag) {
  return complex<float>(0.0f, static_cast<float>(imag));
}

constexpr complex<double> operator"" _id(unsigned long long imag) {
  return complex<double>(0.0, static_cast<double>(imag));
}

} // namespace complex_literals

template <typename T>
constexpr complex<T> operator+(const complex<T>& val) {
  return val;
}

template <typename T>
constexpr complex<T> operator-(const complex<T>& val) {
  return complex<T>(-val.real(), -val.imag());
}

template <typename T>
constexpr complex<T> operator+(const complex<T>& lhs, const complex<T>& rhs) {
  complex<T> result = lhs;
  return result += rhs;
}

template <typename T>
constexpr complex<T> operator+(const complex<T>& lhs, const T& rhs) {
  complex<T> result = lhs;
  return result += rhs;
}

template <typename T>
constexpr complex<T> operator+(const T& lhs, const complex<T>& rhs) {
  return complex<T>(lhs + rhs.real(), rhs.imag());
}

template <typename T>
constexpr complex<T> operator-(const complex<T>& lhs, const complex<T>& rhs) {
  complex<T> result = lhs;
  return result -= rhs;
}

template <typename T>
constexpr complex<T> operator-(const complex<T>& lhs, const T& rhs) {
  complex<T> result = lhs;
  return result -= rhs;
}

template <typename T>
constexpr complex<T> operator-(const T& lhs, const complex<T>& rhs) {
  complex<T> result = -rhs;
  return result += lhs;
}

template <typename T>
constexpr complex<T> operator*(const complex<T>& lhs, const complex<T>& rhs) {
  complex<T> result = lhs;
  return result *= rhs;
}

template <typename T>
constexpr complex<T> operator*(const complex<T>& lhs, const T& rhs) {
  complex<T> result = lhs;
  return result *= rhs;
}

template <typename T>
constexpr complex<T> operator*(const T& lhs, const complex<T>& rhs) {
  complex<T> result = rhs;
  return result *= lhs;
}

template <typename T>
constexpr complex<T> operator/(const complex<T>& lhs, const complex<T>& rhs) {
  complex<T> result = lhs;
  return result /= rhs;
}

template <typename T>
constexpr complex<T> operator/(const complex<T>& lhs, const T& rhs) {
  complex<T> result = lhs;
  return result /= rhs;
}

template <typename T>
constexpr complex<T> operator/(const T& lhs, const complex<T>& rhs) {
  complex<T> result(lhs, T());
  return result /= rhs;
}

// Define operators between integral scalars and c10::complex. std::complex does
// not support this when T is a floating-point number. This is useful because it
// saves a lot of "static_cast" when operate a complex and an integer. This
// makes the code both less verbose and potentially more efficient.
#define COMPLEX_INTEGER_OP_TEMPLATE_CONDITION                           \
  typename std::enable_if_t<                                            \
      std::is_floating_point<fT>::value && std::is_integral<iT>::value, \
      int> = 0

template <typename fT, typename iT, COMPLEX_INTEGER_OP_TEMPLATE_CONDITION>
constexpr c10::complex<fT> operator+(const c10::complex<fT>& a, const iT& b) {
  return a + static_cast<fT>(b);
}

template <typename fT, typename iT, COMPLEX_INTEGER_OP_TEMPLATE_CONDITION>
constexpr c10::complex<fT> operator+(const iT& a, const c10::complex<fT>& b) {
  return static_cast<fT>(a) + b;
}

template <typename fT, typename iT, COMPLEX_INTEGER_OP_TEMPLATE_CONDITION>
constexpr c10::complex<fT> operator-(const c10::complex<fT>& a, const iT& b) {
  return a - static_cast<fT>(b);
}

template <typename fT, typename iT, COMPLEX_INTEGER_OP_TEMPLATE_CONDITION>
constexpr c10::complex<fT> operator-(const iT& a, const c10::complex<fT>& b) {
  return static_cast<fT>(a) - b;
}

template <typename fT, typename iT, COMPLEX_INTEGER_OP_TEMPLATE_CONDITION>
constexpr c10::complex<fT> operator*(const c10::complex<fT>& a, const iT& b) {
  return a * static_cast<fT>(b);
}

template <typename fT, typename iT, COMPLEX_INTEGER_OP_TEMPLATE_CONDITION>
constexpr c10::complex<fT> operator*(const iT& a, const c10::complex<fT>& b) {
  return static_cast<fT>(a) * b;
}

template <typename fT, typename iT, COMPLEX_INTEGER_OP_TEMPLATE_CONDITION>
constexpr c10::complex<fT> operator/(const c10::complex<fT>& a, const iT& b) {
  return a / static_cast<fT>(b);
}

template <typename fT, typename iT, COMPLEX_INTEGER_OP_TEMPLATE_CONDITION>
constexpr c10::complex<fT> operator/(const iT& a, const c10::complex<fT>& b) {
  return static_cast<fT>(a) / b;
}

#undef COMPLEX_INTEGER_OP_TEMPLATE_CONDITION

template <typename T>
constexpr bool operator==(const complex<T>& lhs, const complex<T>& rhs) {
  return (lhs.real() == rhs.real()) && (lhs.imag() == rhs.imag());
}

template <typename T>
constexpr bool operator==(const complex<T>& lhs, const T& rhs) {
  return (lhs.real() == rhs) && (lhs.imag() == T());
}

template <typename T>
constexpr bool operator==(const T& lhs, const complex<T>& rhs) {
  return (lhs == rhs.real()) && (T() == rhs.imag());
}

template <typename T>
constexpr bool operator!=(const complex<T>& lhs, const complex<T>& rhs) {
  return !(lhs == rhs);
}

template <typename T>
constexpr bool operator!=(const complex<T>& lhs, const T& rhs) {
  return !(lhs == rhs);
}

template <typename T>
constexpr bool operator!=(const T& lhs, const complex<T>& rhs) {
  return !(lhs == rhs);
}

template <typename T, typename CharT, typename Traits>
std::basic_ostream<CharT, Traits>& operator<<(
    std::basic_ostream<CharT, Traits>& os,
    const complex<T>& x) {
  return (os << static_cast<std::complex<T>>(x));
}

template <typename T, typename CharT, typename Traits>
std::basic_istream<CharT, Traits>& operator>>(
    std::basic_istream<CharT, Traits>& is,
    complex<T>& x) {
  std::complex<T> tmp;
  is >> tmp;
  x = tmp;
  return is;
}

} // namespace c10

// std functions
//
// The implementation of these functions also follow the design of C++20

#if defined(__CUDACC__) || defined(__HIPCC__)
namespace c10_internal {
template <typename T>
C10_HOST_DEVICE constexpr thrust::complex<T>
cuda101bug_cast_c10_complex_to_thrust_complex(const c10::complex<T>& x) {
#if defined(CUDA_VERSION) && (CUDA_VERSION < 10020)
  // This is to circumvent a CUDA compilation bug. See
  // https://github.com/pytorch/pytorch/pull/38941 . When the bug is fixed, we
  // should do static_cast directly.
  return thrust::complex<T>(x.real(), x.imag());
#else
  return static_cast<thrust::complex<T>>(x);
#endif
}
} // namespace c10_internal
#endif

namespace std {

template <typename T>
constexpr T real(const c10::complex<T>& z) {
  return z.real();
}

template <typename T>
constexpr T imag(const c10::complex<T>& z) {
  return z.imag();
}

template <typename T>
C10_HOST_DEVICE T abs(const c10::complex<T>& z) {
#if defined(__CUDACC__) || defined(__HIPCC__)
  return thrust::abs(
      c10_internal::cuda101bug_cast_c10_complex_to_thrust_complex(z));
#else
  return std::abs(static_cast<std::complex<T>>(z));
#endif
}

#if defined(USE_ROCM)
#define ROCm_Bug(x)
#else
#define ROCm_Bug(x) x
#endif

template <typename T>
C10_HOST_DEVICE T arg(const c10::complex<T>& z) {
  return ROCm_Bug(std)::atan2(std::imag(z), std::real(z));
}

#undef ROCm_Bug

template <typename T>
constexpr T norm(const c10::complex<T>& z) {
  return z.real() * z.real() + z.imag() * z.imag();
}

// For std::conj, there are other versions of it:
//   constexpr std::complex<float> conj( float z );
//   template< class DoubleOrInteger >
//   constexpr std::complex<double> conj( DoubleOrInteger z );
//   constexpr std::complex<long double> conj( long double z );
// These are not implemented
// TODO(@zasdfgbnm): implement them as c10::conj
template <typename T>
constexpr c10::complex<T> conj(const c10::complex<T>& z) {
  return c10::complex<T>(z.real(), -z.imag());
}

// Thrust does not have complex --> complex version of thrust::proj,
// so this function is not implemented at c10 right now.
// TODO(@zasdfgbnm): implement it by ourselves

// There is no c10 version of std::polar, because std::polar always
// returns std::complex. Use c10::polar instead;

} // namespace std

namespace c10 {

template <typename T>
C10_HOST_DEVICE complex<T> polar(const T& r, const T& theta = T()) {
#if defined(__CUDACC__) || defined(__HIPCC__)
  return static_cast<complex<T>>(thrust::polar(r, theta));
#else
  // std::polar() requires r >= 0, so spell out the explicit implementation to
  // avoid a branch.
  return complex<T>(r * std::cos(theta), r * std::sin(theta));
#endif
}

} // namespace c10

C10_CLANG_DIAGNOSTIC_POP()

#define C10_INTERNAL_INCLUDE_COMPLEX_REMAINING_H
// math functions are included in a separate file
#include <c10/util/complex_math.h> // IWYU pragma: keep
// utilities for complex types
#include <c10/util/complex_utils.h> // IWYU pragma: keep
#undef C10_INTERNAL_INCLUDE_COMPLEX_REMAINING_H