File size: 7,101 Bytes
c1b3fbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import torch
import numpy as np
from torch import nn, einsum
from torch.nn import functional as F
from einops.layers.torch import Rearrange
from einops import rearrange, reduce
from math import ceil
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
# helper functions
def exists(val):
return val is not None
def moore_penrose_iter_pinv(x, iters = 6):
device = x.device
abs_x = torch.abs(x)
col = abs_x.sum(dim = -1)
row = abs_x.sum(dim = -2)
z = rearrange(x, '... i j -> ... j i') / (torch.max(col) * torch.max(row))
I = torch.eye(x.shape[-1], device = device)
I = rearrange(I, 'i j -> () i j')
for _ in range(iters):
xz = x @ z
z = 0.25 * z @ (13 * I - (xz @ (15 * I - (xz @ (7 * I - xz)))))
return z
# main attention class
class NystromAttention(nn.Module):
def __init__(
self,
dim,
dim_head = 64,
heads = 8,
num_landmarks = 256,
pinv_iterations = 6,
residual = True,
residual_conv_kernel = 33,
eps = 1e-8,
dropout = 0.
):
super().__init__()
self.eps = eps
inner_dim = heads * dim_head
self.num_landmarks = num_landmarks
self.pinv_iterations = pinv_iterations
self.heads = heads
self.scale = dim_head ** -0.5
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
self.residual = residual
if residual:
kernel_size = residual_conv_kernel
padding = residual_conv_kernel // 2
self.res_conv = nn.Conv2d(heads, heads, (kernel_size, 1), padding = (padding, 0), groups = heads, bias = False)
def forward(self, x, mask = None, return_attn = False):
b, n, _, h, m, iters, eps = *x.shape, self.heads, self.num_landmarks, self.pinv_iterations, self.eps
# pad so that sequence can be evenly divided into m landmarks
remainder = n % m
if remainder > 0:
padding = m - (n % m)
x = F.pad(x, (0, 0, padding, 0), value = 0)
if exists(mask):
mask = F.pad(mask, (padding, 0), value = False)
# derive query, keys, values
q, k, v = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
# set masked positions to 0 in queries, keys, values
if exists(mask):
mask = rearrange(mask, 'b n -> b () n')
q, k, v = map(lambda t: t * mask[..., None], (q, k, v))
q = q * self.scale
# generate landmarks by sum reduction, and then calculate mean using the mask
l = ceil(n / m)
landmark_einops_eq = '... (n l) d -> ... n d'
q_landmarks = reduce(q, landmark_einops_eq, 'sum', l = l)
k_landmarks = reduce(k, landmark_einops_eq, 'sum', l = l)
# calculate landmark mask, and also get sum of non-masked elements in preparation for masked mean
divisor = l
if exists(mask):
mask_landmarks_sum = reduce(mask, '... (n l) -> ... n', 'sum', l = l)
divisor = mask_landmarks_sum[..., None] + eps
mask_landmarks = mask_landmarks_sum > 0
# masked mean (if mask exists)
q_landmarks /= divisor
k_landmarks /= divisor
# similarities
einops_eq = '... i d, ... j d -> ... i j'
sim1 = einsum(einops_eq, q, k_landmarks)
sim2 = einsum(einops_eq, q_landmarks, k_landmarks)
sim3 = einsum(einops_eq, q_landmarks, k)
# masking
if exists(mask):
mask_value = -torch.finfo(q.dtype).max
sim1.masked_fill_(~(mask[..., None] * mask_landmarks[..., None, :]), mask_value)
sim2.masked_fill_(~(mask_landmarks[..., None] * mask_landmarks[..., None, :]), mask_value)
sim3.masked_fill_(~(mask_landmarks[..., None] * mask[..., None, :]), mask_value)
# eq (15) in the paper and aggregate values
attn1, attn2, attn3 = map(lambda t: t.softmax(dim = -1), (sim1, sim2, sim3))
attn2_inv = moore_penrose_iter_pinv(attn2, iters)
out = (attn1 @ attn2_inv) @ (attn3 @ v)
# add depth-wise conv residual of values
if self.residual:
out += self.res_conv(v)
# merge and combine heads
out = rearrange(out, 'b h n d -> b n (h d)', h = h)
out = self.to_out(out)
out = out[:, -n:]
if return_attn:
attn = attn1 @ attn2_inv @ attn3
return out, attn
return out
class NystromBlock(nn.Module):
def __init__(self,dim,dim_ffn, dropout):
super().__init__()
self.Nystrom = NystromAttention(
dim,
dim_head = 64,
heads = 4,
num_landmarks = 32,
pinv_iterations = 3,
residual = True,
residual_conv_kernel = 33,
eps = 1e-8,
dropout = dropout)
self.norm = nn.LayerNorm(dim)
self.ffn = FeedForward(dim,dim_ffn,dropout)
def forward(self, x):
res = x
x = self.norm(x)
x = self.Nystrom(x)
x = res + x
res = x
x = self.norm(x)
x = self.ffn(x)
out = x + res
return out
class ApproximatorGatingUnit(nn.Module):
def __init__(self,d_model,d_ffn,dropout):
super().__init__()
#self.proj = nn.Linear(d_model, d_model)
self.Approx_1 = NystromBlock(d_model,d_ffn,dropout)
self.Approx_2 = NystromBlock(d_model,d_ffn,dropout)
def forward(self, x):
u, v = x, x
u = self.Approx_1(u)
v = self.Approx_2(v)
out = u * v
return out
class ApproximatorBlock(nn.Module):
def __init__(self, d_model, d_ffn,dropout):
super().__init__()
self.norm = nn.LayerNorm(d_model)
self.agu = ApproximatorGatingUnit(d_model,d_ffn,dropout)
self.ffn = FeedForward(d_model,d_ffn,dropout)
def forward(self, x):
residual = x
x = self.norm(x)
x = self.agu(x)
x = x + residual
residual = x
x = self.norm(x)
x = self.ffn(x)
out = x + residual
return out
class Approximator(nn.Module):
def __init__(self, d_model, d_ffn, num_layers,dropout):
super().__init__()
self.model = nn.Sequential(
*[ApproximatorBlock(d_model,d_ffn,dropout) for _ in range(num_layers)],
)
def forward(self, x):
x = self.model(x)
return x
|