File size: 3,034 Bytes
5865eb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
[paths]
train = "./scdata/train.spacy"
dev = "./scdata/dev.spacy"
vectors = null
init_tok2vec = null
[system]
gpu_allocator = null
seed = 0
[nlp]
lang = "en"
pipeline = ["spancat"]
batch_size = 512
disabled = []
before_creation = null
after_creation = null
after_pipeline_creation = null
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
[components]
[components.spancat]
source = "./chemrelmodels/sc/tok2vec"
component = "spancat"
[components.spancat.model]
@architectures = "spacy.SpanCategorizer.v1"
[components.spancat.model.reducer]
@layers = "spacy.mean_max_reducer.v1"
hidden_size = 128
[components.spancat.model.scorer]
@layers = "spacy.LinearLogistic.v1"
nO = null
nI = null
[components.spancat.model.tok2vec]
@architectures = "spacy.Tok2Vec.v1"
[components.spancat.model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v1"
width = 96
rows = [5000,2000,1000,1000]
attrs = ["ORTH","PREFIX","SUFFIX","SHAPE"]
include_static_vectors = false
[components.spancat.model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v1"
width = 96
window_size = 1
maxout_pieces = 3
depth = 4
[components.spancat.suggester]
@misc = "spacy.ngram_range_suggester.v1"
min_size = 1
max_size = 44
[corpora]
[corpora.dev]
@readers = "spacy.Corpus.v1"
path = ${paths.dev}
max_length = 0
gold_preproc = false
limit = 0
augmenter = null
[corpora.train]
@readers = "spacy.Corpus.v1"
path = ${paths.train}
max_length = 0
gold_preproc = false
limit = 0
augmenter = null
[training]
dev_corpus = "corpora.dev"
train_corpus = "corpora.train"
seed = ${system.seed}
gpu_allocator = ${system.gpu_allocator}
# edit here ##########################################
#dropout = 0.1
dropout = 0.2
#dropout = 0.3
#dropout = 0.4
# edit here ##########################################
accumulate_gradient = 1
patience = 100000000
max_epochs = 0
max_steps = 20000
eval_frequency = 10
frozen_components = []
before_to_disk = null
[training.batcher]
@batchers = "spacy.batch_by_words.v1"
discard_oversize = false
tolerance = 0.2
get_length = null
[training.batcher.size]
@schedules = "compounding.v1"
start = 100
stop = 1000
compound = 1.001
t = 0.0
[training.logger]
@loggers = "spacy.ConsoleLogger.v1"
progress_bar = false
[training.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = false
eps = 0.00000001
############################ edit here
#learn_rate = 0.01
#learn_rate = 0.075
#learn_rate = 0.005
#learn_rate = 0.0025
#learn_rate = 0.0005
#learn_rate = 0.0001
learn_rate = 0.00001
############################ edit here
[training.score_weights]
spans_sc_f = 1.0
spans_sc_p = 0.0
spans_sc_r = 0.0
[pretraining]
[initialize]
vectors = ${paths.vectors}
init_tok2vec = ${paths.init_tok2vec}
vocab_data = null
lookups = null
before_init = null
after_init = null
[initialize.components]
[initialize.components.spancat]
[initialize.components.spancat.labels]
@readers = "spacy.read_labels.v1"
path = "goldrels/labels/spancat.json"
[initialize.tokenizer] |