File size: 2,074 Bytes
205ca2b 867cb2a 205ca2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
base_model: dbmdz/bert-base-french-europeana-cased
model-index:
- name: bert-finetuned-Age
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-Age
This model is a fine-tuned version of [dbmdz/bert-base-french-europeana-cased](https://huggingface.co/dbmdz/bert-base-french-europeana-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4642
- F1: 0.7254
- Roc Auc: 0.7940
- Accuracy: 0.7249
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
| 0.4564 | 1.0 | 965 | 0.4642 | 0.7254 | 0.7940 | 0.7254 |
| 0.4443 | 2.0 | 1930 | 0.4662 | 0.7254 | 0.7940 | 0.7254 |
| 0.4388 | 3.0 | 2895 | 0.4628 | 0.7254 | 0.7940 | 0.7254 |
| 0.4486 | 4.0 | 3860 | 0.4642 | 0.7254 | 0.7940 | 0.7249 |
| 0.4287 | 5.0 | 4825 | 0.4958 | 0.7214 | 0.7907 | 0.7150 |
| 0.4055 | 6.0 | 5790 | 0.5325 | 0.6961 | 0.7715 | 0.6782 |
| 0.3514 | 7.0 | 6755 | 0.5588 | 0.6586 | 0.7443 | 0.6223 |
| 0.3227 | 8.0 | 7720 | 0.5944 | 0.6625 | 0.7470 | 0.6295 |
### Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1
|