File size: 20,648 Bytes
1f179c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
import onnxruntime as ort
import cv2
import argparse
import math
import copy
from shapely.geometry import Polygon
import pyclipper
from PIL import Image, ImageDraw, ImageFont
import numpy as np

def resize_img(img, input_size=600):
    """
    resize img and limit the longest side of the image to input_size
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img

def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string

    count_zh = count_pu = 0
    s_len = len(str(s))
    en_dg_count = 0
    for c in str(s):
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)

def text_visual(
    texts,
    scores,
    img_h=400,
    img_w=600,
    threshold=0.0,
    font_path=str("simfang.ttf"),
):
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
        font_path: the path of font which is used to draw text
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores
        ), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.uint8) * 255
        blank_img[:, img_w - 1 :] = 0
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
        return blank_img, draw_txt

    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")

    gap = font_size + 5
    txt_img_list = []
    count, index = 1, 0
    for idx, txt in enumerate(texts):
        index += 1
        if scores[idx] < threshold or math.isnan(scores[idx]):
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[: img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ": " + txt
                first_line = False
            else:
                new_txt = "    " + txt
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
            txt = tmp[img_w // font_size - 4 :]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
            count += 1
        if first_line:
            new_txt = str(index) + ": " + txt + "   " + "%.3f" % (scores[idx])
        else:
            new_txt = "  " + txt + "  " + "%.3f" % (scores[idx])
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
        # whether add new blank img or not
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
        count += 1
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)

def draw_ocr(
    image,
    boxes,
    txts=None,
    scores=None,
    drop_score=0.5,
    font_path=str("simfang.ttf"),
):
    """
    Visualize the results of OCR detection and recognition
    args:
        image(Image|array): RGB image
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
        font_path: the path of font which is used to draw text
    return(array):
        the visualized img
    """
    if scores is None:
        scores = [1] * len(boxes)
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or math.isnan(scores[i])):
            continue
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    if txts is not None:
        img = np.array(resize_img(image, input_size=600))
        txt_img = text_visual(
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path,
        )
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
        return img
    return image

def sav2Img(org_img, result, name="draw_ocr.jpg"):
    result = result[0]
    image = org_img[:, :, ::-1]
    boxes = [line[0] for line in result]
    txts = [line[1][0] for line in result]
    scores = [line[1][1] for line in result]
    im_show = draw_ocr(image, boxes, txts, scores)
    im_show = Image.fromarray(im_show)
    im_show.save(name)

def get_mini_boxes(contour):
    bounding_box = cv2.minAreaRect(contour)
    points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])

    index_1, index_2, index_3, index_4 = 0, 1, 2, 3
    if points[1][1] > points[0][1]:
        index_1 = 0
        index_4 = 1
    else:
        index_1 = 1
        index_4 = 0
    if points[3][1] > points[2][1]:
        index_2 = 2
        index_3 = 3
    else:
        index_2 = 3
        index_3 = 2

    box = [
        points[index_1], points[index_2], points[index_3], points[index_4]
    ]
    return box, min(bounding_box[1])

def box_score_fast(bitmap, _box):
    '''
    box_score_fast: use bbox mean score as the mean score
    '''
    h, w = bitmap.shape[:2]
    box = _box.copy()
    xmin = np.clip(np.floor(box[:, 0].min()).astype("int32"), 0, w - 1)
    xmax = np.clip(np.ceil(box[:, 0].max()).astype("int32"), 0, w - 1)
    ymin = np.clip(np.floor(box[:, 1].min()).astype("int32"), 0, h - 1)
    ymax = np.clip(np.ceil(box[:, 1].max()).astype("int32"), 0, h - 1)

    mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
    box[:, 0] = box[:, 0] - xmin
    box[:, 1] = box[:, 1] - ymin
    cv2.fillPoly(mask, box.reshape(1, -1, 2).astype("int32"), 1)
    return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]

def unclip(box, unclip_ratio):
    poly = Polygon(box)
    distance = poly.area * unclip_ratio / poly.length
    offset = pyclipper.PyclipperOffset()
    offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
    expanded = np.array(offset.Execute(distance))
    return expanded
    
def boxes_from_bitmap(pred, _bitmap, dest_width, dest_height):
        '''
        _bitmap: single map with shape (1, H, W),
                whose values are binarized as {0, 1}
        '''
        box_thresh = 0.6
        max_candidates = 1000
        unclip_ratio = 1.5
        min_size = 3

        bitmap = _bitmap
        height, width = bitmap.shape

        outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
                                cv2.CHAIN_APPROX_SIMPLE)
        if len(outs) == 3:
            img, contours, _ = outs[0], outs[1], outs[2]
        elif len(outs) == 2:
            contours, _ = outs[0], outs[1]

        num_contours = min(len(contours), max_candidates)

        boxes = []
        scores = []
        for index in range(num_contours):
            contour = contours[index]
            points, sside = get_mini_boxes(contour)
            if sside < min_size:
                continue
            points = np.array(points)
            score = box_score_fast(pred, points.reshape(-1, 2))
            if box_thresh > score:
                continue

            box = unclip(points, unclip_ratio).reshape(-1, 1, 2)
            box, sside = get_mini_boxes(box)
            if sside < min_size + 2:
                continue
            box = np.array(box)

            box[:, 0] = np.clip(
                np.round(box[:, 0] / width * dest_width), 0, dest_width)
            box[:, 1] = np.clip(
                np.round(box[:, 1] / height * dest_height), 0, dest_height)
            boxes.append(box.astype("int32"))
            scores.append(score)
        return np.array(boxes, dtype="int32"), scores

def order_points_clockwise(pts):
    rect = np.zeros((4, 2), dtype="float32")
    s = pts.sum(axis=1)
    rect[0] = pts[np.argmin(s)]
    rect[2] = pts[np.argmax(s)]
    tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0)
    diff = np.diff(np.array(tmp), axis=1)
    rect[1] = tmp[np.argmin(diff)]
    rect[3] = tmp[np.argmax(diff)]
    return rect

def clip_det_res(points, img_height, img_width):
    for pno in range(points.shape[0]):
        points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
        points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
    return points
    
def filter_tag_det_res(dt_boxes, image_shape):
    img_height, img_width = image_shape[0:2]
    dt_boxes_new = []
    for box in dt_boxes:
        if type(box) is list:
            box = np.array(box)
        box = order_points_clockwise(box)
        box = clip_det_res(box, img_height, img_width)
        rect_width = int(np.linalg.norm(box[0] - box[1]))
        rect_height = int(np.linalg.norm(box[0] - box[3]))
        if rect_width <= 3 or rect_height <= 3:
            continue
        dt_boxes_new.append(box)
    dt_boxes = np.array(dt_boxes_new)
    return dt_boxes

def sorted_boxes(dt_boxes):
    """
    Sort text boxes in order from top to bottom, left to right
    args:
        dt_boxes(array):detected text boxes with shape [4, 2]
    return:
        sorted boxes(array) with shape [4, 2]
    """
    num_boxes = dt_boxes.shape[0]
    sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
    _boxes = list(sorted_boxes)

    for i in range(num_boxes - 1):
        for j in range(i, -1, -1):
            if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and (
                _boxes[j + 1][0][0] < _boxes[j][0][0]
            ):
                tmp = _boxes[j]
                _boxes[j] = _boxes[j + 1]
                _boxes[j + 1] = tmp
            else:
                break
    return _boxes

def get_rotate_crop_image(img, points):
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]), np.linalg.norm(points[2] - points[3])
        )
    )
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]), np.linalg.norm(points[1] - points[2])
        )
    )
    pts_std = np.float32(
        [
            [0, 0],
            [img_crop_width, 0],
            [img_crop_width, img_crop_height],
            [0, img_crop_height],
        ]
    )
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M,
        (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC,
    )
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img

def resize_norm_img(img,shape):
    h, w = img.shape[:2]
    imgC,imgH,imgW = shape
    ratio = w / float(h)
    if math.ceil(imgH * ratio) > imgW:
        resized_w = imgW
    else:
        resized_w = int(math.ceil(imgH * ratio))
        
    resized_image = cv2.resize(img, (resized_w, imgH))
    resized_image = resized_image.astype("float32")
    resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
    padding_im[:, :, 0:resized_w] = resized_image
    return padding_im

def decode(dict_character,text_index, text_prob=None, is_remove_duplicate=False):
    """convert text-index into text-label."""
    result_list = []
    ignored_tokens = [0]
    batch_size = len(text_index)

    for batch_idx in range(batch_size):
        selection = np.ones(len(text_index[batch_idx]), dtype=bool)
        if is_remove_duplicate:
            selection[1:] = text_index[batch_idx][1:] != text_index[batch_idx][:-1]
        for ignored_token in ignored_tokens:
            selection &= text_index[batch_idx] != ignored_token

        char_list = [
            dict_character[text_id] for text_id in text_index[batch_idx][selection]
        ]
        conf_list = text_prob[batch_idx][selection]
        if len(conf_list) == 0:
            conf_list = [0]

        text = "".join(char_list)
        result_list.append((text, np.mean(conf_list).tolist()))
    return result_list

def det_postprocess(outs_dict, shape_list):
        pred = outs_dict['maps']
        pred = pred[:, 0, :, :]
        segmentation = pred > 0.3
        boxes_batch = []
        for batch_index in range(pred.shape[0]):
            src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
            mask = segmentation[batch_index]
            boxes, scores = boxes_from_bitmap(pred[batch_index], mask, src_w, src_h)
            boxes_batch.append({'points': boxes})
        return boxes_batch

def cls_postprocess(preds,label_list):
    pred_idxs = preds.argmax(axis=1)
    decode_out = [(label_list[idx], preds[i, idx])
                    for i, idx in enumerate(pred_idxs)]
    return decode_out
    
def rec_postprocess(preds,character_dict_path,use_space_char):
    character_str=[]
    with open(character_dict_path, "rb") as fin:
        lines = fin.readlines()
        for line in lines:
            line = line.decode("utf-8").strip("\n").strip("\r\n")
            character_str.append(line)
    if use_space_char:
        character_str.append(" ")
    dict_character = list(character_str)
    dict_character = ["blank"] + dict_character
    if isinstance(preds, tuple) or isinstance(preds, list):
        preds = preds[-1]
    preds_idx = preds.argmax(axis=2)
    preds_prob = preds.max(axis=2)
    text = decode(dict_character,preds_idx, preds_prob, is_remove_duplicate=True)

    return text

def text_detector(session,img,shape=[960,960]):
    orig_h, orig_w = img.shape[:2]
    image = cv2.resize(img, shape)
    mean = np.array([123.675, 116.28, 103.53],dtype=np.float32).reshape(1,1,3)
    std = np.array([58.395, 57.12, 57.375],dtype=np.float32).reshape(1,1,3)
    image = (image-mean)/std 
    image = image.transpose(2,0,1)
    image = np.expand_dims(image, axis=0).astype(np.float32)
    shape_list = [[orig_h, orig_w, shape[1]/orig_h, shape[0]/orig_w]]

    det_out = session.run(None,input_feed={'x':image})
    det_preds = {}
    det_preds["maps"] = det_out[0]

    post_result = det_postprocess(det_preds, shape_list)
    dt_boxes = post_result[0]["points"]
    dt_boxes = filter_tag_det_res(dt_boxes, img.shape)
    if dt_boxes is None:
        return None, None
    dt_boxes = sorted_boxes(dt_boxes)

    return dt_boxes

def text_classifier(session,img_list,shape=[3,80,160]):
    img_list = copy.deepcopy(img_list)
    img_num = len(img_list)
    # Calculate the aspect ratio of all text bars
    width_list = []
    for img in img_list:
        width_list.append(img.shape[1] / float(img.shape[0]))
    # Sorting can speed up the cls process
    indices = np.argsort(np.array(width_list))

    cls_res = [["", 0.0]] * img_num
    batch_num = 1

    for beg_img_no in range(0, img_num, batch_num):

        end_img_no = min(img_num, beg_img_no + batch_num)
        norm_img_batch = []
        for ino in range(beg_img_no, end_img_no):
            norm_img = resize_norm_img(img_list[indices[ino]],shape)
            norm_img = norm_img[np.newaxis, :]
            norm_img_batch.append(norm_img)
        norm_img_batch = np.concatenate(norm_img_batch)
        norm_img_batch = norm_img_batch.copy()

        outputs = session.run(None,input_feed={'x':norm_img_batch})
        prob_out = outputs[0]
        cls_result = cls_postprocess(prob_out,label_list=["0", "180"])

        for rno in range(len(cls_result)):
            label, score = cls_result[rno]
            cls_res[indices[beg_img_no + rno]] = [label, score]
            if "180" in label and score > 0.9:
                img_list[indices[beg_img_no + rno]] = cv2.rotate(
                    img_list[indices[beg_img_no + rno]], 1
                )
    return img_list, cls_res

def text_recognizer(session,img_list,shape=[3,48,320],character_dict_path=r"./ppocrv5_dict.txt"):
    img_num = len(img_list)
    # Calculate the aspect ratio of all text bars
    width_list = []
    for img in img_list:
        width_list.append(img.shape[1] / float(img.shape[0]))
    # Sorting can speed up the recognition process
    indices = np.argsort(np.array(width_list))
    rec_res = [["", 0.0]] * img_num
    batch_num = 1

    for beg_img_no in range(0, img_num, batch_num):
        end_img_no = min(img_num, beg_img_no + batch_num)
        norm_img_batch = []
        for ino in range(beg_img_no, end_img_no):
            norm_img = resize_norm_img(img_list[indices[ino]],shape)
            norm_img = norm_img[np.newaxis, :]
            norm_img_batch.append(norm_img)

        norm_img_batch = np.concatenate(norm_img_batch)
        norm_img_batch = norm_img_batch.copy()

        outputs = session.run(None,input_feed={'x':norm_img_batch})
        preds = outputs[0]
        rec_result = rec_postprocess(preds,character_dict_path,use_space_char=True)
        for rno in range(len(rec_result)):
            rec_res[indices[beg_img_no + rno]] = rec_result[rno]

    return rec_res


def init_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--img_path",type=str,default=str(r"./11.jpg"),help="Path to input image.")
    parser.add_argument("--det_model_dir",type=str,default=str(r"./det_mobile_sim_static.onnx"),help="Path to detection model.")
    parser.add_argument("--rec_model_dir",type=str,default=str(r"./rec_mobile_sim_static.onnx"),help="Path to recognition model.")
    parser.add_argument("--cls_model_dir",type=str,default=str(r"./cls_mobile_sim_static.onnx"),help="Path to classification model.")
    parser.add_argument("--character_dict_path",type=str,default=str(r"./ppocrv5_dict.txt"),help="recognition dictionary")
    parser.add_argument("--det_limit_side_len", type=float, default=[960,960],help="detection model input size")
    parser.add_argument("--rec_image_shape", type=str, default=[3, 48, 320],help="recognition model input size")
    parser.add_argument("--cls_image_shape", type=str, default=[3, 80, 160],help="classification model input size")
    
    return parser.parse_args()

def main(args):
    det_session = ort.InferenceSession(args.det_model_dir,providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
    rec_session = ort.InferenceSession(args.rec_model_dir,providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
    cls_session = ort.InferenceSession(args.cls_model_dir,providers=["CUDAExecutionProvider", "CPUExecutionProvider"])

    image=cv2.imread(args.img_path)

    #文字检测
    dt_boxes = text_detector(det_session,image,args.det_limit_side_len)

    # 图片裁剪
    img_crop_list = []
    im = image.copy()
    for bno in range(len(dt_boxes)):
        tmp_box = copy.deepcopy(dt_boxes[bno])
        img_crop = get_rotate_crop_image(im, tmp_box)
        img_crop_list.append(img_crop)
        # cv2.imwrite(f"{bno}.jpg",img_crop)

    # 方向分类
    img_crop_list, angle_list = text_classifier(cls_session,img_crop_list,args.cls_image_shape)

    # 文字识别
    rec_res = text_recognizer(rec_session,img_crop_list,args.rec_image_shape,args.character_dict_path)
    filter_boxes, filter_rec_res = [], []
    for box, rec_result in zip(dt_boxes, rec_res):
        text, score = rec_result
        if score >= 0.5:
            filter_boxes.append(box)
            filter_rec_res.append(rec_result)

    #输出结果
    ocr_res=[]
    tmp_res = [[box.tolist(), res] for box, res in zip(dt_boxes, rec_res)]
    ocr_res.append(tmp_res)
    for box in ocr_res[0]:
        print(box)
    sav2Img(image, ocr_res,name='res_onnx.jpg')

if __name__=='__main__':
    args=init_args()
    main(args)