AXCXEPT commited on
Commit
ade3da0
1 Parent(s): 8a22ea9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -194
README.md CHANGED
@@ -1,199 +1,110 @@
1
  ---
 
 
 
 
2
  library_name: transformers
3
- tags: []
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - ja
6
  library_name: transformers
7
+ pipeline_tag: text-generation
8
+ tags:
9
+ - conversational
10
  ---
11
 
12
+ # [EZO model card]
13
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/657e900beaad53ff67ba84db/0OYFqT8kACowa9bY1EZF6.png)
14
+
15
+ ## [Model Information]
16
+ This model is based on llm-jp/llm-jp-3-3.7b-instruct, enhanced with multiple tuning techniques to improve its general performance.
17
+
18
+ llm-jp/llm-jp-3-3.7b-instructをベースとして、複数のチューニング手法を採用のうえ、汎用的に性能を向上させたモデルです。
19
+ ※一部の能力はデータセット傾向とモデルサイズにより低下しています。
20
+
21
+ ### [Benchmark Results]
22
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/657e900beaad53ff67ba84db/gKpyHlEMAZWyXkYxBr7bx.png)
23
+
24
+ **Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent/verify/huggingface?returnModelRepoId=google/gemma-2-9b-it)
25
+
26
+ This model is based on llm-jp/llm-jp-3-3.7b-instruct and follows the terms of use (apache-2.0) of llm-jp/llm-jp-3-3.7b-instruct.
27
+
28
+ このモデルはllm-jp/llm-jp-3-3.7b-instructをベースにしており、llm-jp/llm-jp-3-3.7b-instructの利用規約(apache-2.0)を踏襲します。
29
+
30
+ ### [Usage]
31
+ Here are some code snippets to quickly get started with the model. First, run:
32
+ - torch>=2.3.0
33
+ - transformers>=4.40.1
34
+ - tokenizers>=0.19.1
35
+ - accelerate>=0.29.3
36
+ - flash-attn>=2.5.8
37
+ Then, copy the snippet from the relevant section for your use case.
38
+
39
+ 以下に、モデルの実行を素早く開始するためのコードスニペットをいくつか紹介します。
40
+ まず、
41
+ - torch>=2.3.0
42
+ - transformers>=4.40.1
43
+ - tokenizers>=0.19.1
44
+ - accelerate>=0.29.3
45
+ - flash-attn>=2.5.8
46
+ を実行し、使用例に関連するセクションのスニペットをコピーしてください。
47
+
48
+ ### [Chat Template]
49
+
50
+ ```python
51
+ import torch
52
+ from transformers import AutoTokenizer, AutoModelForCausalLM
53
+ model_id = "AXCXEPT/llm-jp-3-3.7b-instruct-EZO-Humanities"
54
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
55
+ model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16)
56
+ chat = [
57
+ {"role": "system", "content": "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。"},
58
+ {"role": "user", "content": "自然言語処理とは何か"},
59
+ ]
60
+ tokenized_input = tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=True, return_tensors="pt").to(model.device)
61
+ with torch.no_grad():
62
+ output = model.generate(
63
+ tokenized_input,
64
+ max_new_tokens=100,
65
+ do_sample=True,
66
+ top_p=0.95,
67
+ temperature=0.7,
68
+ repetition_penalty=1.05,
69
+ )[0]
70
+ print(tokenizer.decode(output))
71
+ ```
72
+
73
+ ### [Model Data]
74
+ #### Training Dataset]
75
+ We extracted high-quality data from Japanese Wikipedia and FineWeb to create instruction data. Our innovative training approach allows for performance improvements across various languages and domains, making the model suitable for global use despite its focus on Japanese data.
76
+
77
+ 日本語のWikiデータおよび、FineWebから良質なデータのみを抽出し、Instructionデータを作成しました。
78
+ このモデルでは日本語に特化させていますが、世界中のどんなユースケースでも利用可能なアプローチです。
79
+
80
+ https://huggingface.co/datasets/legacy-datasets/wikipedia
81
+ https://huggingface.co/datasets/HuggingFaceFW/fineweb
82
+
83
+ #### Data Preprocessing
84
+ We used a plain instruction tuning method to train the model on exemplary responses. This approach enhances the model's ability to understand and generate high-quality responses across various languages and contexts.
85
+
86
+ プレインストラクトチューニング手法を用いて、模範的回答を学習させました。この手法により、モデルは様々な言語やコンテキストにおいて高品質な応答を理解し生成する能力が向上しています。
87
+
88
+ #### Implementation Information
89
+ [Pre-Instruction Training]
90
+
91
+ https://huggingface.co/instruction-pretrain/instruction-synthesizer
92
+
93
+ ### [Disclaimer]
94
+ このモデルは研究開発のみを目的として提供されるものであり、実験的なプロトタイプとみなされるべきモデルです。
95
+ 商業的な使用やミッションクリティカルな環境への配備を意図したものではありません。
96
+ 本モデルの使用は、使用者の責任において行われるものとし、その性能および結果は保証されません。
97
+ Axcxept株式会社は、直接的、間接的、特別、偶発的、結果的な損害、または本モデルの使用から生じるいかなる損失に対しても、得られた結果にかかわらず、一切の責任を負いません。
98
+ 利用者は、本モデルの使用に伴うリスクを十分に理解し、自己の判断で使用するものとします。
99
+
100
+ ### [Hardware]
101
+ A100 × 8(Running in 4h)
102
+
103
+ ### [謝辞]
104
+ We would like to express our gratitude and respect to LLM-jp and the developers of this team for developing this base model, and to the many people who provided the automated evaluation methodology.
105
+
106
+ 本ベースモデルを開発してくださったLLM-jpならびに当該チームの開発者の方々、また自動評価の手法を提供してくださった多数の方々に感謝と尊敬の意を表します。
107
+
108
+ ### [We are.]
109
+ [![Axcxept logo](https://cdn-uploads.huggingface.co/production/uploads/657e900beaad53ff67ba84db/8OKW86U986ywttvL2RcbG.png)](https://axcxept.com)
110