Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,111 @@
|
|
1 |
---
|
|
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
|
143 |
-
|
144 |
|
145 |
-
|
146 |
|
147 |
-
-
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
|
153 |
-
|
154 |
|
155 |
-
### Model Architecture and Objective
|
156 |
|
157 |
-
[
|
|
|
158 |
|
159 |
-
|
160 |
|
161 |
-
[
|
|
|
162 |
|
163 |
-
|
|
|
|
|
|
|
164 |
|
165 |
-
|
|
|
|
|
|
|
166 |
|
167 |
-
|
168 |
|
169 |
-
|
|
|
|
|
170 |
|
171 |
-
|
|
|
172 |
|
173 |
-
|
174 |
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
-
[
|
|
|
|
|
182 |
|
183 |
-
|
184 |
|
185 |
-
|
|
|
186 |
|
187 |
-
|
|
|
188 |
|
189 |
-
|
190 |
|
191 |
-
|
|
|
192 |
|
193 |
-
|
194 |
|
195 |
-
[
|
|
|
196 |
|
197 |
-
|
|
|
198 |
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: llama3
|
3 |
library_name: transformers
|
4 |
+
language:
|
5 |
+
- ja
|
6 |
+
- en
|
7 |
+
---
|
8 |
+
tags:
|
9 |
+
- conversational
|
10 |
---
|
11 |
|
12 |
+
# [Llama-3-EZO model card]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/657e900beaad53ff67ba84db/gF93nHQfSej3QFPFe6gfS.png)
|
15 |
|
16 |
+
Based on [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), it has been enhanced for Japanese usage through additional pre-training and instruction tuning. (Built with Meta Llama3)
|
17 |
|
18 |
+
This model is based on Llama-3-8B-Instruct and is subject to the Llama-3 Terms of Use. For detailed information, please refer to the official Llama-3 license page.
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
このモデルはLlama-3-8B-Instructをベースにしており、Llama-3の利用規約に従います。詳細については、Llama-3の公式ライセンスページをご参照ください。
|
21 |
|
|
|
22 |
|
23 |
+
## [Model Information]
|
24 |
+
This model is based on Llama-3-8B-Instruct, enhanced with multiple tuning techniques to improve its general performance. While it excels in Japanese language tasks, it's designed to meet diverse needs globally.
|
25 |
|
26 |
+
Llama-3-8B-Instructをベースとして、複数のチューニング手法を採用のうえ、汎用的に性能を向上させたモデルです。日本語タスクに優れつつ、世界中の多様なニーズに応える設計となっています。
|
27 |
|
28 |
+
### [Benchmark Results]
|
29 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/657e900beaad53ff67ba84db/XyPo_1rVa_ufmV5SeLepQ.png)
|
30 |
|
31 |
+
### [Usage]
|
32 |
+
Here are some code snippets to quickly get started with the model. First, run:
|
33 |
+
`pip install -U transformers`
|
34 |
+
Then, copy the snippet from the relevant section for your use case.
|
35 |
|
36 |
+
以下に、モデルの実行を素早く開始するためのコードスニペットをいくつか紹介します。
|
37 |
+
まず、
|
38 |
+
`pip install -U transformers`
|
39 |
+
を実行し、使用例に関連するセクションのスニペットをコピーしてください。
|
40 |
|
41 |
+
### [Chat Template]
|
42 |
|
43 |
+
```python
|
44 |
+
import torch
|
45 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
46 |
|
47 |
+
DEFAULT_SYSTEM_PROMPT = "あなたは誠実で優秀な日本人のアシスタントです。指示がなければ、原則日本語で回答してください。"
|
48 |
+
text = "次の物語の展開を予想してみましょう。ある日、主人公のもとに不思議な手紙が届きました。手紙には「今夜の満月に、森の奥深くにある洞窟に来てください。あなたを待っています。」と書かれていました。主人公はその手紙に従い、夜中に洞窟の入り口にたどり着きました。中に入ると、謎めいた人物と出会い。"
|
49 |
|
50 |
+
model_name = "HODACHI/Llama-3-EZO-8b-Common-it"
|
51 |
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
53 |
+
model = AutoModelForCausalLM.from_pretrained(
|
54 |
+
model_name,
|
55 |
+
torch_dtype="auto",
|
56 |
+
device_map="auto",
|
57 |
+
)
|
58 |
+
model.eval()
|
59 |
|
60 |
+
messages = [
|
61 |
+
{"role": "system", "content": DEFAULT_SYSTEM_PROMPT},
|
62 |
+
{"role": "user", "content": text},
|
63 |
+
]
|
64 |
+
prompt = tokenizer.apply_chat_template(
|
65 |
+
messages,
|
66 |
+
tokenize=False,
|
67 |
+
add_generation_prompt=True
|
68 |
+
)
|
69 |
+
token_ids = tokenizer.encode(
|
70 |
+
prompt, add_special_tokens=False, return_tensors="pt"
|
71 |
+
)
|
72 |
|
73 |
+
with torch.no_grad():
|
74 |
+
output_ids = model.generate(
|
75 |
+
token_ids.to(model.device),
|
76 |
+
max_new_tokens=1024,
|
77 |
+
do_sample=True,
|
78 |
+
temperature=0.6,
|
79 |
+
top_p=0.9,
|
80 |
+
)
|
81 |
+
output = tokenizer.decode(
|
82 |
+
output_ids.tolist()[0][token_ids.size(1):], skip_special_tokens=True
|
83 |
+
)
|
84 |
+
print(output)
|
85 |
+
```
|
86 |
|
87 |
+
### [Model Data]
|
88 |
+
#### Training Dataset]
|
89 |
+
We extracted high-quality data from Japanese Wikipedia and FineWeb to create instruction data. Our innovative training approach allows for performance improvements across various languages and domains, making the model suitable for global use despite its focus on Japanese data.
|
90 |
|
91 |
+
日本語のWikiデータおよび、FineWebから良質なデータのみを抽出し、Instructionデータを作成しました。このモデルでは日本語に特化させていますが、世界中のどんなユースケースでも利用可能なアプローチです。
|
92 |
|
93 |
+
https://huggingface.co/datasets/legacy-datasets/wikipedia
|
94 |
+
https://huggingface.co/datasets/HuggingFaceFW/fineweb
|
95 |
|
96 |
+
#### Data Preprocessing
|
97 |
+
We used a plain instruction tuning method to train the model on exemplary responses. This approach enhances the model's ability to understand and generate high-quality responses across various languages and contexts.
|
98 |
|
99 |
+
プレインストラクトチューニング手法を用いて、模範的回答を学習させました。この手法により、モデルは様々な言語やコンテキストにおいて高品質な応答を理解し生成する能力が向上しています。
|
100 |
|
101 |
+
#### Implementation Information
|
102 |
+
[Pre-Instruction Training]
|
103 |
|
104 |
+
https://huggingface.co/instruction-pretrain/instruction-synthesizer
|
105 |
|
106 |
+
### [Hardware]
|
107 |
+
A100 × 4(Running in 12h)
|
108 |
|
109 |
+
### [We are.]
|
110 |
+
[![Axcxept logo](https://cdn-uploads.huggingface.co/production/uploads/657e900beaad53ff67ba84db/8OKW86U986ywttvL2RcbG.png)](https://axcxept.com)
|
111 |
|
|