File size: 9,138 Bytes
204a74f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
---

library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: avsolatorio/GIST-small-Embedding-v0
metrics:
- accuracy
widget:
- text: In Florida, some military veterans are now eligible for temporary teaching
    certificates even if they haven't completed a bachelor's degree.
- text: As the total national income falls, the proportion of it absorbed by government
    will rise.
- text: And while local far-right activists appear to have quietly accepted defeat
    over Belgrade Pride, a tame and small-scale annual event, the ferocity of their
    opposition to EuroPride reveals that social attitudes are not much different from
    2001.
- text: 'In return for this extraordinary gift, corporate shareholders owed an implicit

    obligation back to society: namely, that corporations ought to consider not only

    shareholder interests but broader societal interests when making decisions.'
- text: Nonetheless I believe it falls short for legal and historical reasons that
    I lay out in “Woke, Inc”, my book published last year.
pipeline_tag: text-classification
inference: true
model-index:
- name: SetFit with avsolatorio/GIST-small-Embedding-v0
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.844578313253012
      name: Accuracy
---


# SetFit with avsolatorio/GIST-small-Embedding-v0

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [avsolatorio/GIST-small-Embedding-v0](https://huggingface.co/avsolatorio/GIST-small-Embedding-v0) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [avsolatorio/GIST-small-Embedding-v0](https://huggingface.co/avsolatorio/GIST-small-Embedding-v0)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label      | Examples                                                                                                                                                                                                                                                                                                                                                                                     |
|:-----------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| subjective | <ul><li>'Stakeholder capitalism poisons democracy and partisan politics poisons capitalism.'</li><li>'There is yet everywhere a deficit in the public revenue because the shrinkage in everything taxable was so sudden and violent.'</li><li>'Our system of unbridled profit-focused capitalism used to serve as perhaps the most important of those sanctuaries, but no longer.'</li></ul> |
| objective  | <ul><li>'But a top buying agent tells me that access to 13 can be gained if you know the right people.'</li><li>'A portion of positive tests around the country is being forwarded to the agency for genetic sequencing, according to a report by CBS News.'</li><li>'asked American Federation of Teachers President Randi Weingarten.'</li></ul>                                           |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.8446   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash

pip install setfit

```

Then you can load this model and run inference.

```python

from setfit import SetFitModel



# Download from the 🤗 Hub

model = SetFitModel.from_pretrained("setfit_model_id")

# Run inference

preds = model("As the total national income falls, the proportion of it absorbed by government will rise.")

```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 1   | 22.9219 | 77  |

| Label      | Training Sample Count |
|:-----------|:----------------------|
| objective  | 128                   |
| subjective | 128                   |

### Training Hyperparameters
- batch_size: (32, 32)

- num_epochs: (1, 1)
- max_steps: -1

- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False

- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0010 | 1    | 0.2715        | -               |
| 0.0484 | 50   | 0.2469        | -               |
| 0.0969 | 100  | 0.2247        | -               |
| 0.1453 | 150  | 0.0501        | -               |
| 0.1938 | 200  | 0.0039        | -               |
| 0.2422 | 250  | 0.0014        | -               |
| 0.2907 | 300  | 0.0011        | -               |
| 0.3391 | 350  | 0.0014        | -               |
| 0.3876 | 400  | 0.001         | -               |
| 0.4360 | 450  | 0.0009        | -               |
| 0.4845 | 500  | 0.0008        | -               |
| 0.5329 | 550  | 0.0008        | -               |
| 0.5814 | 600  | 0.0008        | -               |
| 0.6298 | 650  | 0.0007        | -               |
| 0.6783 | 700  | 0.0007        | -               |
| 0.7267 | 750  | 0.0006        | -               |
| 0.7752 | 800  | 0.0007        | -               |
| 0.8236 | 850  | 0.0006        | -               |
| 0.8721 | 900  | 0.0005        | -               |
| 0.9205 | 950  | 0.0007        | -               |
| 0.9690 | 1000 | 0.0007        | -               |

### Framework Versions
- Python: 3.11.9
- SetFit: 1.0.3
- Sentence Transformers: 3.0.0
- Transformers: 4.40.2
- PyTorch: 2.1.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex

@article{https://doi.org/10.48550/arxiv.2209.11055,

    doi = {10.48550/ARXIV.2209.11055},

    url = {https://arxiv.org/abs/2209.11055},

    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},

    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},

    title = {Efficient Few-Shot Learning Without Prompts},

    publisher = {arXiv},

    year = {2022},

    copyright = {Creative Commons Attribution 4.0 International}

}

```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->