metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: >-
swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-BreastCancer-BreakHis-AH-60-20-20
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: Splitted-Resized
split: train
args: Splitted-Resized
metrics:
- name: Accuracy
type: accuracy
value: 0.9943422913719944
swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-BreastCancer-BreakHis-AH-60-20-20
This model is a fine-tuned version of microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0229
- Accuracy: 0.9943
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.5
- num_epochs: 7
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.2053 | 1.0 | 199 | 0.1227 | 0.9496 |
0.1302 | 2.0 | 398 | 0.0665 | 0.9736 |
0.0784 | 3.0 | 597 | 0.0600 | 0.9778 |
0.1181 | 4.0 | 796 | 0.0449 | 0.9849 |
0.208 | 5.0 | 995 | 0.0393 | 0.9887 |
0.0057 | 6.0 | 1194 | 0.0229 | 0.9943 |
0.0017 | 7.0 | 1393 | 0.0263 | 0.9939 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3