ALM-AHME's picture
update model card README.md
3726421
|
raw
history blame
2.5 kB
metadata
license: apache-2.0
base_model: facebook/convnextv2-large-1k-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: >-
      convnextv2-large-1k-224-finetuned-Lesion-Classification-HAM10000-AH-60-20-20-Shuffled
    results: []

convnextv2-large-1k-224-finetuned-Lesion-Classification-HAM10000-AH-60-20-20-Shuffled

This model is a fine-tuned version of facebook/convnextv2-large-1k-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0721
  • Accuracy: 0.9869

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.9
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.8937 1.0 114 1.9040 0.3144
1.7208 2.0 229 1.6891 0.5632
1.3822 3.0 343 1.3554 0.6897
1.1497 4.0 458 1.2437 0.5755
0.8979 5.0 572 0.8548 0.7701
0.6382 6.0 687 0.6359 0.8424
0.583 7.0 801 0.4687 0.8966
0.6295 8.0 916 0.5029 0.8456
0.5367 9.0 1030 0.4742 0.8670
0.5091 10.0 1145 0.3038 0.9212
0.3521 11.0 1259 0.1855 0.9606
0.318 12.0 1374 0.1893 0.9573
0.2725 13.0 1488 0.2292 0.9409
0.2937 14.0 1603 0.0866 0.9836
0.1185 14.93 1710 0.0721 0.9869

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3