ALM-AHME's picture
update model card README.md
c627962
|
raw
history blame
2.32 kB
metadata
license: apache-2.0
base_model: facebook/convnextv2-large-1k-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: >-
      convnextv2-large-1k-224-finetuned-Lesion-Classification-HAM10000-AH-60-20-20-Shuffled
    results: []

convnextv2-large-1k-224-finetuned-Lesion-Classification-HAM10000-AH-60-20-20-Shuffled

This model is a fine-tuned version of facebook/convnextv2-large-1k-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0946
  • Accuracy: 0.9852

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.9
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.9014 1.0 114 1.8872 0.3982
1.6303 2.0 229 1.6163 0.5928
1.291 3.0 343 1.2220 0.6773
1.0813 4.0 458 0.9574 0.7750
0.7168 5.0 572 0.7792 0.7603
0.6184 6.0 687 0.5539 0.8678
0.677 7.0 801 0.4482 0.8727
0.4876 8.0 916 0.3289 0.9269
0.4 9.0 1030 0.2379 0.9499
0.4122 10.0 1145 0.2452 0.9351
0.4494 11.0 1259 0.1790 0.9581
0.2026 11.95 1368 0.0946 0.9852

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3