ALM-AHME's picture
Model save
c38a652
|
raw
history blame
2.51 kB
metadata
license: apache-2.0
base_model: facebook/convnextv2-large-1k-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: >-
      convnextv2-large-1k-224-finetuned-Lesion-Classification-HAM10000-AH-60-20-20-Shuffled-3rd
    results: []

convnextv2-large-1k-224-finetuned-Lesion-Classification-HAM10000-AH-60-20-20-Shuffled-3rd

This model is a fine-tuned version of facebook/convnextv2-large-1k-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0672
  • Accuracy: 0.9893

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.9
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.9123 1.0 114 1.9145 0.2241
1.7059 2.0 229 1.6895 0.5599
1.3919 3.0 343 1.3194 0.6634
1.0811 4.0 458 1.0303 0.7151
0.9301 5.0 572 0.8376 0.7562
0.7336 6.0 687 0.6449 0.8374
0.5805 7.0 801 0.5091 0.8736
0.5982 8.0 916 0.4677 0.8826
0.4939 9.0 1030 0.4029 0.8842
0.3296 10.0 1145 0.3051 0.9204
0.3559 11.0 1259 0.5266 0.8366
0.3089 12.0 1374 0.3569 0.8883
0.2272 13.0 1488 0.1487 0.9680
0.3355 14.0 1603 0.2344 0.9269
0.1581 14.93 1710 0.0672 0.9893

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3