metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: >-
beit-large-patch16-224-finetuned-LungCancer-Classification-LC25000-AH-40-30-30-Shuffled-3rd
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9716500553709856
beit-large-patch16-224-finetuned-LungCancer-Classification-LC25000-AH-40-30-30-Shuffled-3rd
This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0727
- Accuracy: 0.9717
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.5
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3123 | 0.99 | 93 | 0.7104 | 0.7770 |
0.261 | 1.99 | 187 | 0.4562 | 0.8173 |
0.2012 | 3.0 | 281 | 0.1291 | 0.9508 |
0.1424 | 4.0 | 375 | 0.1332 | 0.9508 |
0.0949 | 4.96 | 465 | 0.0727 | 0.9717 |
Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3