|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- multi_news |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: resume6 |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: multi_news |
|
type: multi_news |
|
config: default |
|
split: test |
|
args: default |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 22.17621046093242 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# resume6 |
|
|
|
This model is a fine-tuned version of [AKbuyer/resume5](https://huggingface.co/AKbuyer/resume5) on the multi_news dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.9796 |
|
- Rouge1: 22.1762 |
|
- Rouge2: 6.6459 |
|
- Rougel: 18.3710 |
|
- Rougelsum: 18.3626 |
|
- Gen Len: 1893.4899 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-07 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:---------:| |
|
| 3.3348 | 1.0 | 5622 | 3.0918 | 21.3362 | 6.1922 | 17.7104 | 17.6992 | 1893.0630 | |
|
| 3.2854 | 2.0 | 11244 | 3.0466 | 21.6506 | 6.3791 | 17.9362 | 17.9246 | 1891.6044 | |
|
| 3.2205 | 3.0 | 16866 | 3.0200 | 21.8475 | 6.4847 | 18.0981 | 18.0882 | 1892.4760 | |
|
| 3.2251 | 4.0 | 22488 | 3.0029 | 22.0082 | 6.5196 | 18.2405 | 18.2301 | 1892.9385 | |
|
| 3.2348 | 5.0 | 28110 | 2.9916 | 22.1078 | 6.5975 | 18.3134 | 18.2985 | 1893.3298 | |
|
| 3.2257 | 6.0 | 33732 | 2.9845 | 22.1627 | 6.6119 | 18.3677 | 18.3496 | 1893.5788 | |
|
| 3.2106 | 7.0 | 39354 | 2.9806 | 22.1825 | 6.6472 | 18.3798 | 18.3664 | 1893.5432 | |
|
| 3.22 | 8.0 | 44976 | 2.9796 | 22.1762 | 6.6459 | 18.3710 | 18.3626 | 1893.4899 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.29.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|