File size: 2,596 Bytes
92a0bad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- multi_news
metrics:
- rouge
model-index:
- name: resume6
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: multi_news
      type: multi_news
      config: default
      split: test
      args: default
    metrics:
    - name: Rouge1
      type: rouge
      value: 22.17621046093242
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# resume6

This model is a fine-tuned version of [AKbuyer/resume5](https://huggingface.co/AKbuyer/resume5) on the multi_news dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9796
- Rouge1: 22.1762
- Rouge2: 6.6459
- Rougel: 18.3710
- Rougelsum: 18.3626
- Gen Len: 1893.4899

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum | Gen Len   |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:---------:|
| 3.3348        | 1.0   | 5622  | 3.0918          | 21.3362 | 6.1922 | 17.7104 | 17.6992   | 1893.0630 |
| 3.2854        | 2.0   | 11244 | 3.0466          | 21.6506 | 6.3791 | 17.9362 | 17.9246   | 1891.6044 |
| 3.2205        | 3.0   | 16866 | 3.0200          | 21.8475 | 6.4847 | 18.0981 | 18.0882   | 1892.4760 |
| 3.2251        | 4.0   | 22488 | 3.0029          | 22.0082 | 6.5196 | 18.2405 | 18.2301   | 1892.9385 |
| 3.2348        | 5.0   | 28110 | 2.9916          | 22.1078 | 6.5975 | 18.3134 | 18.2985   | 1893.3298 |
| 3.2257        | 6.0   | 33732 | 2.9845          | 22.1627 | 6.6119 | 18.3677 | 18.3496   | 1893.5788 |
| 3.2106        | 7.0   | 39354 | 2.9806          | 22.1825 | 6.6472 | 18.3798 | 18.3664   | 1893.5432 |
| 3.22          | 8.0   | 44976 | 2.9796          | 22.1762 | 6.6459 | 18.3710 | 18.3626   | 1893.4899 |


### Framework versions

- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3