File size: 9,688 Bytes
3a85408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
"""
resnet for 1-d signal data, pytorch version
 
Shenda Hong, Oct 2019
"""

import numpy as np
from collections import Counter
from tqdm import tqdm
from matplotlib import pyplot as plt
from sklearn.metrics import classification_report 

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader

class MyDataset(Dataset):
    def __init__(self, data, label):
        self.data = data
        self.label = label

    def __getitem__(self, index):
        return (torch.tensor(self.data[index], dtype=torch.float), torch.tensor(self.label[index], dtype=torch.long))

    def __len__(self):
        return len(self.data)
    
class MyConv1dPadSame(nn.Module):
    """
    extend nn.Conv1d to support SAME padding
    """
    def __init__(self, in_channels, out_channels, kernel_size, stride, groups=1):
        super(MyConv1dPadSame, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.stride = stride
        self.groups = groups
        self.conv = torch.nn.Conv1d(
            in_channels=self.in_channels, 
            out_channels=self.out_channels, 
            kernel_size=self.kernel_size, 
            stride=self.stride, 
            groups=self.groups)

    def forward(self, x):
        
        net = x
        
        # compute pad shape
        in_dim = net.shape[-1]
        out_dim = (in_dim + self.stride - 1) // self.stride
        p = max(0, (out_dim - 1) * self.stride + self.kernel_size - in_dim)
        pad_left = p // 2
        pad_right = p - pad_left
        net = F.pad(net, (pad_left, pad_right), "constant", 0)
        
        net = self.conv(net)

        return net
        
class MyMaxPool1dPadSame(nn.Module):
    """
    extend nn.MaxPool1d to support SAME padding
    """
    def __init__(self, kernel_size):
        super(MyMaxPool1dPadSame, self).__init__()
        self.kernel_size = kernel_size
        self.stride = 1
        self.max_pool = torch.nn.MaxPool1d(kernel_size=self.kernel_size)

    def forward(self, x):
        
        net = x
        
        # compute pad shape
        in_dim = net.shape[-1]
        out_dim = (in_dim + self.stride - 1) // self.stride
        p = max(0, (out_dim - 1) * self.stride + self.kernel_size - in_dim)
        pad_left = p // 2
        pad_right = p - pad_left
        net = F.pad(net, (pad_left, pad_right), "constant", 0)
        
        net = self.max_pool(net)
        
        return net
    
class BasicBlock(nn.Module):
    """
    ResNet Basic Block
    """
    def __init__(self, in_channels, out_channels, kernel_size, stride, groups, downsample, use_bn, use_do, is_first_block=False):
        super(BasicBlock, self).__init__()
        
        self.in_channels = in_channels
        self.kernel_size = kernel_size
        self.out_channels = out_channels
        self.stride = stride
        self.groups = groups
        self.downsample = downsample
        if self.downsample:
            self.stride = stride
        else:
            self.stride = 1
        self.is_first_block = is_first_block
        self.use_bn = use_bn
        self.use_do = use_do

        # the first conv
        self.bn1 = nn.BatchNorm1d(in_channels)
        self.relu1 = nn.ReLU()
        self.do1 = nn.Dropout(p=0.5)
        self.conv1 = MyConv1dPadSame(
            in_channels=in_channels, 
            out_channels=out_channels, 
            kernel_size=kernel_size, 
            stride=self.stride,
            groups=self.groups)

        # the second conv
        self.bn2 = nn.BatchNorm1d(out_channels)
        self.relu2 = nn.ReLU()
        self.do2 = nn.Dropout(p=0.5)
        self.conv2 = MyConv1dPadSame(
            in_channels=out_channels, 
            out_channels=out_channels, 
            kernel_size=kernel_size, 
            stride=1,
            groups=self.groups)
                
        self.max_pool = MyMaxPool1dPadSame(kernel_size=self.stride)

    def forward(self, x):
        
        identity = x
        
        # the first conv
        out = x
        if not self.is_first_block:
            if self.use_bn:
                out = self.bn1(out)
            out = self.relu1(out)
            if self.use_do:
                out = self.do1(out)
        out = self.conv1(out)
        
        # the second conv
        if self.use_bn:
            out = self.bn2(out)
        out = self.relu2(out)
        if self.use_do:
            out = self.do2(out)
        out = self.conv2(out)
        
        # if downsample, also downsample identity
        if self.downsample:
            identity = self.max_pool(identity)
            
        # if expand channel, also pad zeros to identity
        if self.out_channels != self.in_channels:
            identity = identity.transpose(-1,-2)
            ch1 = (self.out_channels-self.in_channels)//2
            ch2 = self.out_channels-self.in_channels-ch1
            identity = F.pad(identity, (ch1, ch2), "constant", 0)
            identity = identity.transpose(-1,-2)
        
        # shortcut
        out += identity

        return out
    
class ResNet1D(nn.Module):
    """
    
    Input:
        X: (n_samples, n_channel, n_length)
        Y: (n_samples)
        
    Output:
        out: (n_samples)
        
    Pararmetes:
        in_channels: dim of input, the same as n_channel
        base_filters: number of filters in the first several Conv layer, it will double at every 4 layers
        kernel_size: width of kernel
        stride: stride of kernel moving
        groups: set larget to 1 as ResNeXt
        n_block: number of blocks
        n_classes: number of classes
        
    """

    def __init__(self, in_channels, base_filters, kernel_size, stride, groups, n_block, n_classes, downsample_gap=2, increasefilter_gap=4, use_bn=True, use_do=True, verbose=False):
        super(ResNet1D, self).__init__()
        
        self.verbose = verbose
        self.n_block = n_block
        self.kernel_size = kernel_size
        self.stride = stride
        self.groups = groups
        self.use_bn = use_bn
        self.use_do = use_do

        self.downsample_gap = downsample_gap # 2 for base model
        self.increasefilter_gap = increasefilter_gap # 4 for base model

        # first block
        self.first_block_conv = MyConv1dPadSame(in_channels=in_channels, out_channels=base_filters, kernel_size=self.kernel_size, stride=1)
        self.first_block_bn = nn.BatchNorm1d(base_filters)
        self.first_block_relu = nn.ReLU()
        out_channels = base_filters
                
        # residual blocks
        self.basicblock_list = nn.ModuleList()
        for i_block in range(self.n_block):
            # is_first_block
            if i_block == 0:
                is_first_block = True
            else:
                is_first_block = False
            # downsample at every self.downsample_gap blocks
            if i_block % self.downsample_gap == 1:
                downsample = True
            else:
                downsample = False
            # in_channels and out_channels
            if is_first_block:
                in_channels = base_filters
                out_channels = in_channels
            else:
                # increase filters at every self.increasefilter_gap blocks
                in_channels = int(base_filters*2**((i_block-1)//self.increasefilter_gap))
                if (i_block % self.increasefilter_gap == 0) and (i_block != 0):
                    out_channels = in_channels * 2
                else:
                    out_channels = in_channels
            
            tmp_block = BasicBlock(
                in_channels=in_channels, 
                out_channels=out_channels, 
                kernel_size=self.kernel_size, 
                stride = self.stride, 
                groups = self.groups, 
                downsample=downsample, 
                use_bn = self.use_bn, 
                use_do = self.use_do, 
                is_first_block=is_first_block)
            self.basicblock_list.append(tmp_block)

        # final prediction
        self.final_bn = nn.BatchNorm1d(out_channels)
        self.final_relu = nn.ReLU(inplace=True)
        self.do = nn.Dropout(p=0.3)
        self.dense = nn.Linear(out_channels, n_classes)
        # self.softmax = nn.Softmax(dim=1)
        
    def forward(self, x):
        
        out = x
        
        # first conv
        if self.verbose:
            print('input shape', out.shape)
        out = self.first_block_conv(out)
        if self.verbose:
            print('after first conv', out.shape)
        if self.use_bn:
            out = self.first_block_bn(out)
        out = self.first_block_relu(out)
        
        # residual blocks, every block has two conv
        for i_block in range(self.n_block):
            net = self.basicblock_list[i_block]
            if self.verbose:
                print('i_block: {0}, in_channels: {1}, out_channels: {2}, downsample: {3}'.format(i_block, net.in_channels, net.out_channels, net.downsample))
            out = net(out)
            if self.verbose:
                print(out.shape)

        # final prediction
        if self.use_bn:
            out = self.final_bn(out)
        out = self.final_relu(out)
        out = out.mean(-1)
        if self.verbose:
            print('final pooling', out.shape)
        # out = self.do(out)
        out = self.dense(out)
        if self.verbose:
            print('dense', out.shape)
        # out = self.softmax(out)
        if self.verbose:
            print('softmax', out.shape)
        
        return out