Adapters
English
ai
deepseek
dht
File size: 4,451 Bytes
0efd351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
import torch.nn as nn
from huggingface_hub import PyTorchModelHubMixin
import hashlib
import random

# Simple DHT Implementation
class SimpleDHT:
    def __init__(self, node_id):
        self.node_id = node_id
        self.storage = {}

    def _hash(self, key):
        """Generate a hash for the key."""
        return hashlib.sha256(key.encode()).hexdigest()

    def put(self, key, value):
        """Store a key-value pair in the DHT."""
        hashed_key = self._hash(key)
        self.storage[hashed_key] = value
        print(f"Stored {key} at {hashed_key}")

    def get(self, key):
        """Retrieve a value from the DHT by key."""
        hashed_key = self._hash(key)
        return self.storage.get(hashed_key, None)

# Self Sovereign AI 1.0 with DeepSeek R1 Support
class SelfSovereignAI(nn.Module, PyTorchModelHubMixin):
    def __init__(self, input_size=10, hidden_size=20, output_size=1, seq_length=8, num_heads=2):
        super(SelfSovereignAI, self).__init__()
        
        # Original feedforward layers
        self.layer1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()
        self.layer2 = nn.Linear(hidden_size, output_size)
        self.sigmoid = nn.Sigmoid()

        # DeepSeek R1-inspired Transformer layer
        self.embedding = nn.Linear(input_size, hidden_size)
        self.transformer = nn.TransformerEncoder(
            nn.TransformerEncoderLayer(
                d_model=hidden_size,
                nhead=num_heads,
                dim_feedforward=hidden_size * 4,
                dropout=0.1
            ),
            num_layers=1
        )
        self.seq_length = seq_length

        # DHT for decentralized storage
        self.dht = SimpleDHT(node_id=str(random.randint(1, 1000)))
        self._store_metadata()

    def forward(self, x, use_transformer=False):
        if use_transformer:
            # Transformer path (expects sequence data: batch_size, seq_length, input_size)
            x = self.embedding(x)
            x = self.transformer(x)
            x = x.mean(dim=1)  # Average over sequence length
            x = self.layer2(x)
            x = self.sigmoid(x)
        else:
            # Original feedforward path
            x = self.layer1(x)
            x = self.relu(x)
            x = self.layer2(x)
            x = self.sigmoid(x)
        return x

    def _store_metadata(self):
        """Store model metadata in DHT, including DeepSeek R1 details."""
        metadata = {
            "model_name": "Self Sovereign AI 1.0 with DeepSeek R1",
            "input_size": 10,
            "hidden_size": 20,
            "output_size": 1,
            "seq_length": self.seq_length,
            "num_heads": 2,
            "supports_transformer": True
        }
        self.dht.put("metadata", metadata)

        # Store transformer weights in DHT (example)
        transformer_weights = self.transformer.state_dict()
        self.dht.put("transformer_weights", transformer_weights)

    def load_from_dht(self):
        """Load transformer weights from DHT if available."""
        weights = self.dht.get("transformer_weights")
        if weights:
            self.transformer.load_state_dict(weights)
            print("Loaded transformer weights from DHT")

    def get_metadata(self):
        """Retrieve model metadata from DHT."""
        return self.dht.get("metadata")

# Example usage
if __name__ == "__main__":
    # Create an instance of the model
    model = SelfSovereignAI(input_size=10, hidden_size=20, output_size=1, seq_length=8, num_heads=2)

    # Test feedforward path
    input_data_ff = torch.randn(1, 10)
    output_ff = model(input_data_ff, use_transformer=False)
    print(f"Feedforward output: {output_ff}")

    # Test transformer path (DeepSeek R1-style)
    input_data_tr = torch.randn(1, 8, 10)  # batch_size, seq_length, input_size
    output_tr = model(input_data_tr, use_transformer=True)
    print(f"Transformer output: {output_tr}")

    # Retrieve metadata from DHT
    metadata = model.get_metadata()
    print(f"Stored metadata: {metadata}")

    # Load transformer weights from DHT (simulated)
    model.load_from_dht()

    # Save the model locally
    model.save_pretrained("self_sovereign_ai_1.0_deepseek")

    # Push to Hugging Face Hub
    model.push_to_hub(
        repo_id="your-username/self-sovereign-ai-1.0-deepseek",
        commit_message="Added DeepSeek R1 support to Self Sovereign AI 1.0"
    )