File size: 1,198 Bytes
b65833f
e59e3c7
 
 
 
 
 
 
b65833f
 
e59e3c7
 
b65833f
e59e3c7
b65833f
e59e3c7
b65833f
e59e3c7
b65833f
e59e3c7
b65833f
e59e3c7
b65833f
e59e3c7
b65833f
e59e3c7
b65833f
e59e3c7
b65833f
e59e3c7
b65833f
e59e3c7
b65833f
e59e3c7
 
 
 
 
 
 
 
 
 
bb1d65a
e59e3c7
b65833f
e59e3c7
b65833f
 
 
e59e3c7
b65833f
e59e3c7
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
model-index:
- name: w2v-bert-fine-tuning
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v-bert-fine-tuning

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the None dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 40
- mixed_precision_training: Native AMP

### Training results



### Framework versions

- Transformers 4.40.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.19.1