English
File size: 13,320 Bytes
839a654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import math
import random
import time

# CUSTOMIZATION

CONTEXT_WINDOW = 5  
EPOCHS = 500
LR = 0.01

def relu(x):
    return max(0.0, x)

def stable_softmax(x_list):
    if not x_list:
        return []
    m = max(x_list)
    exps = [math.exp(i - m) for i in x_list]
    s = sum(exps)
    if s == 0:
        return [1.0 / len(x_list)] * len(x_list)
    return [e / s for e in exps]

class NeuralNetwork:
    def __init__(self, layer_sizes=None, activation='relu', output_activation='softmax',
                 init_range=0.1, grad_clip=1.0, seed=None, context_window=5):
        if seed is not None:
            random.seed(seed)
        self.layer_sizes = layer_sizes[:] if layer_sizes is not None else None
        self.activation = relu if activation == 'relu' else (lambda x: x)
        self.output_activation = stable_softmax if output_activation == 'softmax' else (lambda x: x)
        self.init_range = float(init_range)
        self.grad_clip = grad_clip
        self.context_window = context_window
        self.weights = []
        self.biases = []
        self.vocab = []
        self.word_to_idx = {}
        self.idx_to_word = {}

    def prepare_data_with_context(self, text):
        words = [w.strip() for w in text.replace('\n', ' ').split(' ') if w.strip()]
        self.vocab = sorted(list(set(words)))
        self.word_to_idx = {w: i for i, w in enumerate(self.vocab)}
        self.idx_to_word = {i: w for w, i in self.word_to_idx.items()}
        
        vocab_size = len(self.vocab)
        X = []
        Y = []
        
        for i in range(len(words) - self.context_window):
            context_words = words[i : i + self.context_window]
            target_word = words[i + self.context_window]
            
            x = [0.0] * vocab_size
            for word in context_words:
                if word in self.word_to_idx:
                    x[self.word_to_idx[word]] = 1.0 
            
            y = [0.0] * vocab_size
            if target_word in self.word_to_idx:
                y[self.word_to_idx[target_word]] = 1.0
            
            X.append(x)
            Y.append(y)
            
        return X, Y

    def initialize_weights(self):
        if self.layer_sizes is None:
            raise ValueError("layer_sizes must be set before initializing weights.")
        if self.weights:
            return
        for i in range(len(self.layer_sizes) - 1):
            in_dim = self.layer_sizes[i]
            out_dim = self.layer_sizes[i + 1]
            W = [[random.uniform(-self.init_range, self.init_range) for _ in range(out_dim)] for _ in range(in_dim)]
            b = [0.0 for _ in range(out_dim)]
            self.weights.append(W)
            self.biases.append(b)

    def forward(self, x):
        a = x[:]
        for i in range(len(self.weights) - 1):
            next_a = []
            W = self.weights[i]
            b = self.biases[i]
            out_dim = len(W[0])
            for j in range(out_dim):
                s = sum(a[k] * W[k][j] for k in range(len(a))) + b[j]
                next_a.append(self.activation(s))
            a = next_a

        W = self.weights[-1]
        b = self.biases[-1]
        out = []
        out_dim = len(W[0])
        for j in range(out_dim):
            s = sum(a[k] * W[k][j] for k in range(len(a))) + b[j]
            out.append(s)
        return self.output_activation(out)

    def train(self, training_data, lr=0.01, epochs=500, verbose_every=50):
        X, Y = self.prepare_data_with_context(training_data)
        if not X:
            raise ValueError("Not enough tokens in training data to create context windows.")

        vocab_size = len(self.vocab)
        if self.layer_sizes is None:
            self.layer_sizes = [vocab_size, 64, vocab_size]
        else:
            self.layer_sizes[0] = vocab_size
            self.layer_sizes[-1] = vocab_size

        self.initialize_weights()

        for epoch in range(epochs):
            total_loss = 0.0
            indices = list(range(len(X)))
            random.shuffle(indices)

            for idx in indices:
                x = X[idx]
                y = Y[idx]

                activations = [x[:]]
                pre_acts = []
                a = x[:]
                
                for i in range(len(self.weights) - 1):
                    W, b = self.weights[i], self.biases[i]
                    z = []
                    out_dim = len(W[0])
                    for j in range(out_dim):
                        s = sum(a[k] * W[k][j] for k in range(len(a))) + b[j]
                        z.append(s)
                    pre_acts.append(z)
                    a = [self.activation(val) for val in z]
                    activations.append(a)

                W, b = self.weights[-1], self.biases[-1]
                z_final = []
                out_dim = len(W[0])
                for j in range(out_dim):
                    s = sum(a[k] * W[k][j] for k in range(len(a))) + b[j]
                    z_final.append(s)
                pre_acts.append(z_final)
                out = self.output_activation(z_final)

                delta = [out[j] - y[j] for j in range(len(y))]

                for i in reversed(range(len(self.weights))):
                    in_act = activations[i]
                    in_dim = len(in_act)
                    out_dim = len(delta)
                    
                    db = delta[:]
                    if self.grad_clip is not None:
                        db = [max(-self.grad_clip, min(self.grad_clip, g)) for g in db]
                    for j in range(len(self.biases[i])):
                        self.biases[i][j] -= lr * db[j]

                    for k in range(in_dim):
                        for j in range(out_dim):
                            grad_w = in_act[k] * delta[j]
                            if self.grad_clip is not None:
                                grad_w = max(-self.grad_clip, min(self.grad_clip, grad_w))
                            self.weights[i][k][j] -= lr * grad_w

                    if i != 0:
                        prev_delta = [0.0] * in_dim
                        for p in range(in_dim):
                            s = sum(self.weights[i][p][j] * delta[j] for j in range(out_dim))
                            if pre_acts[i-1][p] > 0:
                                prev_delta[p] = s
                        delta = prev_delta
            
            if epoch % verbose_every == 0 or epoch == epochs - 1:
                loss = 0.0
                for x_val, y_val in zip(X, Y):
                    p = self.forward(x_val)
                    for j in range(len(y_val)):
                        if y_val[j] > 0:
                            loss -= math.log(p[j] + 1e-12)
                print(f"Epoch {epoch}, Loss: {loss / len(X):.6f}")

    def export_to_python(self, filename):
        lines = []
        lines.append("import math\n")
        lines.append("import time\n\n")
        lines.append("def relu(x):\n    return max(0.0, x)\n\n")
        lines.append("def softmax(x_list):\n")
        lines.append("    if not x_list:\n")
        lines.append("        return []\n")
        lines.append("    m = max(x_list)\n")
        lines.append("    exps = [math.exp(i - m) for i in x_list]\n")
        lines.append("    s = sum(exps)\n")
        lines.append("    if s == 0:\n")
        lines.append("        return [1.0 / len(x_list)] * len(x_list)\n")
        lines.append("    return [e / s for e in exps]\n\n")

        neuron_id = 0
        for layer_idx, (W, b) in enumerate(zip(self.weights, self.biases)):
            in_dim, out_dim = len(W), len(W[0])
            for j in range(out_dim):
                terms = " + ".join([f"{W[i][j]:.8f}*inputs[{i}]" for i in range(in_dim)]) or "0.0"
                b_term = f"{b[j]:.8f}"
                if layer_idx != len(self.weights) - 1:
                    lines.append(f"def neuron_{neuron_id}(inputs):\n    return relu({terms} + {b_term})\n\n")
                else:
                    lines.append(f"def neuron_{neuron_id}(inputs):\n    return {terms} + {b_term}\n\n")
                neuron_id += 1

        neuron_counter = 0
        for layer_idx, (W, b) in enumerate(zip(self.weights, self.biases)):
            out_dim = len(W[0])
            lines.append(f"def layer_{layer_idx}(inputs):\n")
            inner = ", ".join([f"neuron_{neuron_counter + j}(inputs)" for j in range(out_dim)])
            lines.append(f"    return [{inner}]\n\n")
            neuron_counter += out_dim

        lines.append("def predict(inputs):\n")
        lines.append("    a = inputs\n")
        for i in range(len(self.weights)):
            lines.append(f"    a = layer_{i}(a)\n")
        lines.append("    return softmax(a)\n\n")

        lines.append(f"vocab = {self.vocab}\n")
        lines.append(f"word_to_idx = {{w: i for i, w in enumerate(vocab)}}\n")
        lines.append(f"context_window = {self.context_window}\n\n")

        lines.append("if __name__ == '__main__':\n")
        lines.append("    print('Interactive multi-word text completion.')\n")
        lines.append("    print(f'Model context window: {context_window} words. Type text or empty to exit.')\n")
        lines.append("    while True:\n")
        lines.append("        inp = input('> ').strip()\n")
        lines.append("        if not inp:\n")
        lines.append("            break\n")
        lines.append("        words = [w.strip() for w in inp.split(' ') if w.strip()]\n")
        lines.append("        generated_words = words[:]\n")
        lines.append("        print('Input:', ' '.join(generated_words), end='', flush=True)\n")
        lines.append("        for _ in range(20):\n")
        lines.append("            context = generated_words[-context_window:]\n")
        lines.append("            x = [0.0] * len(vocab)\n")
        lines.append("            for word in context:\n")
        lines.append("                if word in word_to_idx:\n")
        lines.append("                    x[word_to_idx[word]] = 1.0\n")
        lines.append("            out = predict(x)\n")
        lines.append("            idx = out.index(max(out))\n")
        lines.append("            next_word = vocab[idx]\n")
        lines.append("            if next_word == '<|endoftext|>': break\n")
        lines.append("            generated_words.append(next_word)\n")
        lines.append("            print(' ' + next_word, end='', flush=True)\n")
        lines.append("            time.sleep(0.1)\n")
        lines.append("        print('\\n')\n")

        with open(filename, "w") as f:
            f.writelines(lines)
        print(f"Exported network to {filename}")

    @staticmethod
    def load_network(filename):
        ns = {"__name__": "__loaded_model__"}
        with open(filename, "r") as f:
            code = f.read()
        exec(code, ns)
        class ModelWrapper:
            def __init__(self, ns):
                self.ns = ns
                self.vocab = ns.get("vocab", [])
                self.word_to_idx = ns.get("word_to_idx", {})
                self.context_window = ns.get("context_window", 5)

            def complete(self, input_text, max_new_words=20):
                words = [w.strip() for w in input_text.strip().split(' ') if w.strip()]
                generated = words[:]
                for _ in range(max_new_words):
                    context = generated[-self.context_window:]
                    x = [0.0] * len(self.vocab)
                    for word in context:
                        if word in self.word_to_idx:
                            x[self.word_to_idx[word]] = 1.0
                    
                    out = self.ns["predict"](x)
                    idx = out.index(max(out))
                    next_word = self.vocab[idx]
                    
                    if next_word == '<|endoftext|>':
                        break
                    generated.append(next_word)
                return ' '.join(generated)

        return ModelWrapper(ns)


if __name__ == "__main__":
    sample_text = """
user: hi
ai: Hello! How can I help you today?
<|endoftext|>
user: hi
ai: Hi! What can I do for you today?
<|endoftext|>
user: hello
ai: Hello! How can I help you today?
<|endoftext|>
user: hey
ai: Hi! What can I do for you today?
<|endoftext|>
user: How's your day going?
ai: It's been great! Thanks for asking! How about yours?
<|endoftext|>
user: What's new with you?
ai: Not much, just here and ready to help! What's new with you?
<|endoftext|>
user: What can you do?
ai: I can help you with a variety of tasks. What's on your mind?
<|endoftext|>
user: Tell me a joke.
ai: Why did the scarecrow win an award? Because he was outstanding in his field!
<|endoftext|>
"""
    nn = NeuralNetwork(context_window=CONTEXT_WINDOW, seed=42)
    nn.train(training_data=sample_text, lr=LR, epochs=EPOCHS, verbose_every=100)
    nn.export_to_python("exported_model.py")

    model = NeuralNetwork.load_network("exported_model.py")
    print("\n--- Testing loaded model ---")
    print(f"Vocabulary size: {len(model.vocab)}")
    
    test_inputs = ["user: hi", "user: What's new", "ai: It's been"]
    for test_input in test_inputs:
        completion = model.complete(test_input, max_new_words=10)
        print(f"Input: '{test_input}'\nOutput: '{completion}'\n")