Marcos12886's picture
Upload folder using huggingface_hub
b6ee774 verified
|
raw
history blame
2.22 kB
metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-mixed-data
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8691275167785235

distilhubert-finetuned-mixed-data

This model is a fine-tuned version of ntu-spml/distilhubert on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3360
  • Accuracy: 0.8691

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 123
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.001
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9664 18 0.6860 0.7584
No log 1.9866 37 0.4623 0.8020
No log 2.9530 55 0.4069 0.8188
No log 3.9732 74 0.3811 0.8356
No log 4.9933 93 0.3542 0.8356
No log 5.9597 111 0.3380 0.8658
No log 6.7651 126 0.3360 0.8691

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1