File size: 2,553 Bytes
b508c18 aa4f325 0bd4058 aa4f325 0bd4058 aa4f325 3a20f1d aa4f325 0bd4058 f51570b 93789ad f51570b aa4f325 f51570b 5639334 f51570b 93789ad f51570b aa4f325 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
license: apache-2.0
tags:
- Token Classification
language:
- zh
---
## Model description
This model is a fine-tuned version of bert-base-chinese for the purpose of medicine name recognition. We fine-tuned bert-base-chinese on a 500M dataset including 100K+ authorized medical articles on which we labeled all the medicine names. The model achieves 92% accuracy on our test dataset.
## Intended use
```python
>>> from transformers import (AutoModelForTokenClassification, AutoTokenizer)
>>> from transformers import pipeline
>>> hub_model_id = "9pinus/macbert-base-chinese-medicine-recognition"
>>> model = AutoModelForTokenClassification.from_pretrained(hub_model_id)
>>> tokenizer = AutoTokenizer.from_pretrained(hub_model_id)
>>> classifier = pipeline('ner', model=model, tokenizer=tokenizer)
>>> result = classifier("ε¦ζη
ζ
θΎιοΌε―ιε½ε£ζη²η‘εηγη―ι
―ηΊ’ιη΄ ηγε²εηΎθΎηηθ―η©θΏθ‘ζζζιηγ")
>>> for item in result:
>>> if item['entity'] == 1 or item['entity'] == 2:
>>> print(item)
{'entity': 1, 'score': 0.99999595, 'index': 13, 'word': 'η²', 'start': 12, 'end': 13}
{'entity': 2, 'score': 0.9999957, 'index': 14, 'word': 'η‘', 'start': 13, 'end': 14}
{'entity': 2, 'score': 0.99999166, 'index': 15, 'word': 'ε', 'start': 14, 'end': 15}
{'entity': 2, 'score': 0.99898833, 'index': 16, 'word': 'η', 'start': 15, 'end': 16}
{'entity': 1, 'score': 0.9999864, 'index': 18, 'word': 'η―', 'start': 17, 'end': 18}
{'entity': 2, 'score': 0.99999404, 'index': 19, 'word': 'ι
―', 'start': 18, 'end': 19}
{'entity': 2, 'score': 0.99999475, 'index': 20, 'word': 'ηΊ’', 'start': 19, 'end': 20}
{'entity': 2, 'score': 0.9999964, 'index': 21, 'word': 'ι', 'start': 20, 'end': 21}
{'entity': 2, 'score': 0.9999951, 'index': 22, 'word': 'η΄ ', 'start': 21, 'end': 22}
{'entity': 2, 'score': 0.9990088, 'index': 23, 'word': 'η', 'start': 22, 'end': 23}
{'entity': 1, 'score': 0.9999975, 'index': 25, 'word': 'ε²', 'start': 24, 'end': 25}
{'entity': 2, 'score': 0.9999957, 'index': 26, 'word': 'ε', 'start': 25, 'end': 26}
{'entity': 2, 'score': 0.9999945, 'index': 27, 'word': 'ηΎ', 'start': 26, 'end': 27}
{'entity': 2, 'score': 0.9999933, 'index': 28, 'word': 'θΎ', 'start': 27, 'end': 28}
{'entity': 2, 'score': 0.99949837, 'index': 29, 'word': 'η', 'start': 28, 'end': 29}
```
## Training and evaluation data
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.17.0
- Tokenizers 0.10.3
|