File size: 25,669 Bytes
17934c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 |
# Add your utilities or helper functions to this file.
import os
from pathlib import Path
from dotenv import load_dotenv, find_dotenv
from io import StringIO, BytesIO
import textwrap
from typing import Iterator, TextIO, List, Dict, Any, Optional, Sequence, Union
from enum import auto, Enum
import base64
import glob
import requests
from tqdm import tqdm
from pytubefix import YouTube, Stream
import webvtt
from youtube_transcript_api import YouTubeTranscriptApi
from youtube_transcript_api.formatters import WebVTTFormatter
from predictionguard import PredictionGuard
import cv2
import json
import PIL
from ollama import chat
from ollama import ChatResponse
from PIL import Image
import dataclasses
import random
from datasets import load_dataset
from os import path as osp
from IPython.display import display
from langchain_core.prompt_values import PromptValue
from langchain_core.messages import (
MessageLikeRepresentation,
)
MultimodalModelInput = Union[PromptValue, str, Sequence[MessageLikeRepresentation], Dict[str, Any]]
def get_from_dict_or_env(
data: Dict[str, Any], key: str, env_key: str, default: Optional[str] = None
) -> str:
"""Get a value from a dictionary or an environment variable."""
if key in data and data[key]:
return data[key]
else:
return get_from_env(key, env_key, default=default)
def get_from_env(key: str, env_key: str, default: Optional[str] = None) -> str:
"""Get a value from a dictionary or an environment variable."""
if env_key in os.environ and os.environ[env_key]:
return os.environ[env_key]
else:
return default
def load_env():
_ = load_dotenv(find_dotenv())
def get_openai_api_key():
load_env()
openai_api_key = os.getenv("OPENAI_API_KEY")
return openai_api_key
def get_prediction_guard_api_key():
load_env()
PREDICTION_GUARD_API_KEY = os.getenv("PREDICTION_GUARD_API_KEY", None)
if PREDICTION_GUARD_API_KEY is None:
PREDICTION_GUARD_API_KEY = input("Please enter your Prediction Guard API Key: ")
return PREDICTION_GUARD_API_KEY
PREDICTION_GUARD_URL_ENDPOINT = os.getenv("DLAI_PREDICTION_GUARD_URL_ENDPOINT", "https://dl-itdc.predictionguard.com") ###"https://proxy-dl-itdc.predictionguard.com"
# prompt templates
templates = [
'a picture of {}',
'an image of {}',
'a nice {}',
'a beautiful {}',
]
# function helps to prepare list image-text pairs from the first [test_size] data of a Huggingface dataset
def prepare_dataset_for_umap_visualization(hf_dataset, class_name, templates=templates, test_size=1000):
# load Huggingface dataset (download if needed)
dataset = load_dataset(hf_dataset, trust_remote_code=True)
# split dataset with specific test_size
train_test_dataset = dataset['train'].train_test_split(test_size=test_size)
# get the test dataset
test_dataset = train_test_dataset['test']
img_txt_pairs = []
for i in range(len(test_dataset)):
img_txt_pairs.append({
'caption' : templates[random.randint(0, len(templates)-1)].format(class_name),
'pil_img' : test_dataset[i]['image']
})
return img_txt_pairs
def download_video(video_url, path='/tmp/'):
print(f'Getting video information for {video_url}')
if not video_url.startswith('http'):
return os.path.join(path, video_url)
filepath = glob.glob(os.path.join(path, '*.mp4'))
if len(filepath) > 0:
print('Video already downloaded')
return filepath[0]
def progress_callback(stream: Stream, data_chunk: bytes, bytes_remaining: int) -> None:
pbar.update(len(data_chunk))
yt = YouTube(video_url, on_progress_callback=progress_callback)
stream = yt.streams.filter(progressive=True, file_extension='mp4', res='480p').desc().first()
if stream is None:
stream = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
if not os.path.exists(path):
os.makedirs(path)
filename = stream.default_filename.replace(' ', '_')
filepath = os.path.join(path, filename)
if not os.path.exists(filepath):
print('Downloading video from YouTube...')
pbar = tqdm(desc='Downloading video from YouTube', total=stream.filesize, unit="bytes")
stream.download(path, filename=filename)
pbar.close()
return filepath
def get_video_id_from_url(video_url):
"""
Examples:
- http://youtu.be/SA2iWivDJiE
- http://www.youtube.com/watch?v=_oPAwA_Udwc&feature=feedu
- http://www.youtube.com/embed/SA2iWivDJiE
- http://www.youtube.com/v/SA2iWivDJiE?version=3&hl=en_US
"""
import urllib.parse
url = urllib.parse.urlparse(video_url)
if url.hostname == 'youtu.be':
return url.path[1:]
if url.hostname in ('www.youtube.com', 'youtube.com'):
if url.path == '/watch':
p = urllib.parse.parse_qs(url.query)
return p['v'][0]
if url.path[:7] == '/embed/':
return url.path.split('/')[2]
if url.path[:3] == '/v/':
return url.path.split('/')[2]
return video_url
# if this has transcript then download
def get_transcript_vtt(video_url, path='/tmp'):
video_id = get_video_id_from_url(video_url)
filepath = os.path.join(path,'captions.vtt')
if os.path.exists(filepath):
return filepath
transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=['en-GB', 'en'])
formatter = WebVTTFormatter()
webvtt_formatted = formatter.format_transcript(transcript)
with open(filepath, 'w', encoding='utf-8') as webvtt_file:
webvtt_file.write(webvtt_formatted)
webvtt_file.close()
return filepath
# helper function for convert time in second to time format for .vtt or .srt file
def format_timestamp(seconds: float, always_include_hours: bool = False, fractionalSeperator: str = '.'):
assert seconds >= 0, "non-negative timestamp expected"
milliseconds = round(seconds * 1000.0)
hours = milliseconds // 3_600_000
milliseconds -= hours * 3_600_000
minutes = milliseconds // 60_000
milliseconds -= minutes * 60_000
seconds = milliseconds // 1_000
milliseconds -= seconds * 1_000
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
return f"{hours_marker}{minutes:02d}:{seconds:02d}{fractionalSeperator}{milliseconds:03d}"
# a help function that helps to convert a specific time written as a string in format `webvtt` into a time in miliseconds
def str2time(strtime):
# strip character " if exists
strtime = strtime.strip('"')
# get hour, minute, second from time string
hrs, mins, seconds = [float(c) for c in strtime.split(':')]
# get the corresponding time as total seconds
total_seconds = hrs * 60**2 + mins * 60 + seconds
total_miliseconds = total_seconds * 1000
return total_miliseconds
def _processText(text: str, maxLineWidth=None):
if (maxLineWidth is None or maxLineWidth < 0):
return text
lines = textwrap.wrap(text, width=maxLineWidth, tabsize=4)
return '\n'.join(lines)
# Resizes a image and maintains aspect ratio
def maintain_aspect_ratio_resize(image, width=None, height=None, inter=cv2.INTER_AREA):
# Grab the image size and initialize dimensions
dim = None
(h, w) = image.shape[:2]
# Return original image if no need to resize
if width is None and height is None:
return image
# We are resizing height if width is none
if width is None:
# Calculate the ratio of the height and construct the dimensions
r = height / float(h)
dim = (int(w * r), height)
# We are resizing width if height is none
else:
# Calculate the ratio of the width and construct the dimensions
r = width / float(w)
dim = (width, int(h * r))
# Return the resized image
return cv2.resize(image, dim, interpolation=inter)
# helper function to convert transcripts generated by whisper to .vtt file
def write_vtt(transcript: Iterator[dict], file: TextIO, maxLineWidth=None):
print("WEBVTT\n", file=file)
for segment in transcript:
text = _processText(segment['text'], maxLineWidth).replace('-->', '->')
print(
f"{format_timestamp(segment['start'])} --> {format_timestamp(segment['end'])}\n"
f"{text}\n",
file=file,
flush=True,
)
# helper function to convert transcripts generated by whisper to .srt file
def write_srt(transcript: Iterator[dict], file: TextIO, maxLineWidth=None):
"""
Write a transcript to a file in SRT format.
Example usage:
from pathlib import Path
from whisper.utils import write_srt
import requests
result = transcribe(model, audio_path, temperature=temperature, **args)
# save SRT
audio_basename = Path(audio_path).stem
with open(Path(output_dir) / (audio_basename + ".srt"), "w", encoding="utf-8") as srt:
write_srt(result["segments"], file=srt)
"""
for i, segment in enumerate(transcript, start=1):
text = _processText(segment['text'].strip(), maxLineWidth).replace('-->', '->')
# write srt lines
print(
f"{i}\n"
f"{format_timestamp(segment['start'], always_include_hours=True, fractionalSeperator=',')} --> "
f"{format_timestamp(segment['end'], always_include_hours=True, fractionalSeperator=',')}\n"
f"{text}\n",
file=file,
flush=True,
)
def getSubs(segments: Iterator[dict], format: str, maxLineWidth: int=-1) -> str:
segmentStream = StringIO()
if format == 'vtt':
write_vtt(segments, file=segmentStream, maxLineWidth=maxLineWidth)
elif format == 'srt':
write_srt(segments, file=segmentStream, maxLineWidth=maxLineWidth)
else:
raise Exception("Unknown format " + format)
segmentStream.seek(0)
return segmentStream.read()
# encoding image at given path or PIL Image using base64
def encode_image(image_path_or_PIL_img):
if isinstance(image_path_or_PIL_img, PIL.Image.Image):
# this is a PIL image
buffered = BytesIO()
image_path_or_PIL_img.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
else:
# this is a image_path
with open(image_path_or_PIL_img, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
# checking whether the given string is base64 or not
def isBase64(sb):
try:
if isinstance(sb, str):
# If there's any unicode here, an exception will be thrown and the function will return false
sb_bytes = bytes(sb, 'ascii')
elif isinstance(sb, bytes):
sb_bytes = sb
else:
raise ValueError("Argument must be string or bytes")
return base64.b64encode(base64.b64decode(sb_bytes)) == sb_bytes
except Exception:
return False
def encode_image_from_path_or_url(image_path_or_url):
try:
# try to open the url to check valid url
f = urlopen(image_path_or_url)
# if this is an url
return base64.b64encode(requests.get(image_path_or_url).content).decode('utf-8')
except:
# this is a path to image
with open(image_path_or_url, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
# helper function to compute the joint embedding of a prompt and a base64-encoded image through PredictionGuard
def bt_embedding_from_prediction_guard(prompt, base64_image):
# get PredictionGuard client
client = _getPredictionGuardClient()
message = {"text": prompt,}
if base64_image is not None and base64_image != "":
if not isBase64(base64_image):
raise TypeError("image input must be in base64 encoding!")
message['image'] = base64_image
response = client.embeddings.create(
model="bridgetower-large-itm-mlm-itc",
input=[message]
)
return response['data'][0]['embedding']
def load_json_file(file_path):
# Open the JSON file in read mode
with open(file_path, 'r') as file:
data = json.load(file)
return data
def display_retrieved_results(results):
print(f'There is/are {len(results)} retrieved result(s)')
print()
for i, res in enumerate(results):
print(f'The caption of the {str(i+1)}-th retrieved result is:\n"{results[i].page_content}"')
print()
print(results[i])
#display(Image.open(results[i].metadata['metadata']['extracted_frame_path']))
print("------------------------------------------------------------")
class SeparatorStyle(Enum):
"""Different separator style."""
SINGLE = auto()
@dataclasses.dataclass
class Conversation:
"""A class that keeps all conversation history"""
system: str
roles: List[str]
messages: List[List[str]]
map_roles: Dict[str, str]
version: str = "Unknown"
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
sep: str = "\n"
def _get_prompt_role(self, role):
if self.map_roles is not None and role in self.map_roles.keys():
return self.map_roles[role]
else:
return role
def _build_content_for_first_message_in_conversation(self, first_message: List[str]):
content = []
if len(first_message) != 2:
raise TypeError("First message in Conversation needs to include a prompt and a base64-enconded image!")
prompt, b64_image = first_message[0], first_message[1]
# handling prompt
if prompt is None:
raise TypeError("API does not support None prompt yet")
content.append({
"type": "text",
"text": prompt
})
if b64_image is None:
raise TypeError("API does not support text only conversation yet")
# handling image
if not isBase64(b64_image):
raise TypeError("Image in Conversation's first message must be stored under base64 encoding!")
content.append({
"type": "image_url",
"image_url": {
"url": b64_image,
}
})
return content
def _build_content_for_follow_up_messages_in_conversation(self, follow_up_message: List[str]):
if follow_up_message is not None and len(follow_up_message) > 1:
raise TypeError("Follow-up message in Conversation must not include an image!")
# handling text prompt
if follow_up_message is None or follow_up_message[0] is None:
raise TypeError("Follow-up message in Conversation must include exactly one text message")
text = follow_up_message[0]
return text
def get_message(self):
messages = self.messages
api_messages = []
for i, msg in enumerate(messages):
role, message_content = msg
if i == 0:
# get content for very first message in conversation
content = self._build_content_for_first_message_in_conversation(message_content)
else:
# get content for follow-up message in conversation
content = self._build_content_for_follow_up_messages_in_conversation(message_content)
api_messages.append({
"role": role,
"content": content,
})
return api_messages
# this method helps represent a multi-turn chat into as a single turn chat format
def serialize_messages(self):
messages = self.messages
ret = ""
if self.sep_style == SeparatorStyle.SINGLE:
if self.system is not None and self.system != "":
ret = self.system + self.sep
for i, (role, message) in enumerate(messages):
role = self._get_prompt_role(role)
if message:
if isinstance(message, List):
# get prompt only
message = message[0]
if i == 0:
# do not include role at the beginning
ret += message
else:
ret += role + ": " + message
if i < len(messages) - 1:
# avoid including sep at the end of serialized message
ret += self.sep
else:
ret += role + ":"
else:
raise ValueError(f"Invalid style: {self.sep_style}")
return ret
def append_message(self, role, message):
if len(self.messages) == 0:
# data verification for the very first message
assert role == self.roles[0], f"the very first message in conversation must be from role {self.roles[0]}"
assert len(message) == 2, f"the very first message in conversation must include both prompt and an image"
prompt, image = message[0], message[1]
assert prompt is not None, f"prompt must be not None"
assert isBase64(image), f"image must be under base64 encoding"
else:
# data verification for follow-up message
assert role in self.roles, f"the follow-up message must be from one of the roles {self.roles}"
assert len(message) == 1, f"the follow-up message must consist of one text message only, no image"
self.messages.append([role, message])
def copy(self):
return Conversation(
system=self.system,
roles=self.roles,
messages=[[x,y] for x, y in self.messages],
version=self.version,
map_roles=self.map_roles,
)
def dict(self):
return {
"system": self.system,
"roles": self.roles,
"messages": [[x, y[0] if len(y) == 1 else y] for x, y in self.messages],
"version": self.version,
}
prediction_guard_llava_conv = Conversation(
system="",
roles=("user", "assistant"),
messages=[],
version="Prediction Guard LLaVA enpoint Conversation v0",
sep_style=SeparatorStyle.SINGLE,
map_roles={
"user": "USER",
"assistant": "ASSISTANT"
}
)
# get PredictionGuard Client
def _getPredictionGuardClient():
PREDICTION_GUARD_API_KEY = get_prediction_guard_api_key()
client = PredictionGuard(
api_key=PREDICTION_GUARD_API_KEY,
url=PREDICTION_GUARD_URL_ENDPOINT,
)
return client
# helper function to call chat completion endpoint of PredictionGuard given a prompt and an image
def lvlm_inference(prompt, image, max_tokens: int = 200, temperature: float = 0.95, top_p: float = 0.1, top_k: int = 10):
# prepare conversation
conversation = prediction_guard_llava_conv.copy()
conversation.append_message(conversation.roles[0], [prompt, image])
return lvlm_inference_with_conversation(conversation, max_tokens=max_tokens, temperature=temperature, top_p=top_p, top_k=top_k)
def lvlm_inference_with_conversation(conversation, max_tokens: int = 200, temperature: float = 0.95, top_p: float = 0.1, top_k: int = 10):
# get PredictionGuard client
client = _getPredictionGuardClient()
# get message from conversation
messages = conversation.get_message()
# call chat completion endpoint at Grediction Guard
response = client.chat.completions.create(
model="llava-1.5-7b-hf",
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
)
return response['choices'][-1]['message']['content']
def lvlm_inference_with_ollama(conversation, max_tokens: int = 200, temperature: float = 0.95, top_p: float = 0.1, top_k: int = 10):
# Send the request to the local Ollama server
#response = requests.post("http://localhost:8000/api/v1/completions", json=payload)
stream = chat(
model="llava-1.5-7b-hf",
messages= conversation,
stream=True,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
top_k=top_k
)
response_data = ''
for chunk in stream:
response_data += chunk['message']['content']
return response_data
# function `extract_and_save_frames_and_metadata``:
# receives as input a video and its transcript
# does extracting and saving frames and their metadatas
# returns the extracted metadatas
def extract_and_save_frames_and_metadata(
path_to_video,
path_to_transcript,
path_to_save_extracted_frames,
path_to_save_metadatas):
# metadatas will store the metadata of all extracted frames
metadatas = []
# load video using cv2
video = cv2.VideoCapture(path_to_video)
# load transcript using webvtt
trans = webvtt.read(path_to_transcript)
# iterate transcript file
# for each video segment specified in the transcript file
for idx, transcript in enumerate(trans):
# get the start time and end time in seconds
start_time_ms = str2time(transcript.start)
end_time_ms = str2time(transcript.end)
# get the time in ms exactly
# in the middle of start time and end time
mid_time_ms = (end_time_ms + start_time_ms) / 2
# get the transcript, remove the next-line symbol
text = transcript.text.replace("\n", ' ')
# get frame at the middle time
video.set(cv2.CAP_PROP_POS_MSEC, mid_time_ms)
success, frame = video.read()
if success:
# if the frame is extracted successfully, resize it
image = maintain_aspect_ratio_resize(frame, height=350)
# save frame as JPEG file
img_fname = f'frame_{idx}.jpg'
img_fpath = osp.join(
path_to_save_extracted_frames, img_fname
)
cv2.imwrite(img_fpath, image)
# prepare the metadata
metadata = {
'extracted_frame_path': img_fpath,
'transcript': text,
'video_segment_id': idx,
'video_path': path_to_video,
'mid_time_ms': mid_time_ms,
}
metadatas.append(metadata)
else:
print(f"ERROR! Cannot extract frame: idx = {idx}")
# save metadata of all extracted frames
fn = osp.join(path_to_save_metadatas, 'metadatas.json')
with open(fn, 'w') as outfile:
json.dump(metadatas, outfile)
return metadatas
def extract_meta_data(vid_dir, vid_filepath, vid_transcript_filepath):
# output paths to save extracted frames and their metadata
extracted_frames_path = osp.join(vid_dir, 'extracted_frame')
metadatas_path = vid_dir
# create these output folders if not existing
Path(extracted_frames_path).mkdir(parents=True, exist_ok=True)
Path(metadatas_path).mkdir(parents=True, exist_ok=True)
# call the function to extract frames and metadatas
metadatas = extract_and_save_frames_and_metadata(
vid_filepath,
vid_transcript_filepath,
extracted_frames_path,
metadatas_path,
)
return metadatas
# function extract_and_save_frames_and_metadata_with_fps
# receives as input a video
# does extracting and saving frames and their metadatas
# returns the extracted metadatas
def extract_and_save_frames_and_metadata_with_fps(
lvlm_prompt,
path_to_video,
path_to_save_extracted_frames,
path_to_save_metadatas,
num_of_extracted_frames_per_second=1):
# metadatas will store the metadata of all extracted frames
metadatas = []
# load video using cv2
video = cv2.VideoCapture(path_to_video)
# Get the frames per second
fps = video.get(cv2.CAP_PROP_FPS)
# Get hop = the number of frames pass before a frame is extracted
hop = round(fps / num_of_extracted_frames_per_second)
curr_frame = 0
idx = -1
while(True):
# iterate all frames
ret, frame = video.read()
if not ret:
break
if curr_frame % hop == 0:
idx = idx + 1
# if the frame is extracted successfully, resize it
image = maintain_aspect_ratio_resize(frame, height=350)
# save frame as JPEG file
img_fname = f'frame_{idx}.jpg'
img_fpath = osp.join(
path_to_save_extracted_frames,
img_fname
)
cv2.imwrite(img_fpath, image)
# generate caption using lvlm_inference
b64_image = encode_image(img_fpath)
caption = lvlm_inference(lvlm_prompt, b64_image)
# prepare the metadata
metadata = {
'extracted_frame_path': img_fpath,
'transcript': caption,
'video_segment_id': idx,
'video_path': path_to_video,
}
metadatas.append(metadata)
curr_frame += 1
# save metadata of all extracted frames
metadatas_path = osp.join(path_to_save_metadatas,'metadatas.json')
with open(metadatas_path, 'w') as outfile:
json.dump(metadatas, outfile)
return metadatas |