File size: 53,029 Bytes
7b78fe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
2023-03-26 11:13:34,846   INFO  **********************Start logging**********************
2023-03-26 11:13:34,846   INFO  CUDA_VISIBLE_DEVICES=ALL
2023-03-26 11:13:34,847   INFO  total_batch_size: 16
2023-03-26 11:13:34,847   INFO  cfg_file         cfgs/sunrgbd_models/CAGroup3D.yaml
2023-03-26 11:13:34,848   INFO  batch_size       16
2023-03-26 11:13:34,849   INFO  epochs           1
2023-03-26 11:13:34,850   INFO  workers          4
2023-03-26 11:13:34,851   INFO  extra_tag        cagroup3d-win10-sunrgbd
2023-03-26 11:13:34,851   INFO  ckpt             None
2023-03-26 11:13:34,852   INFO  pretrained_model None
2023-03-26 11:13:34,853   INFO  launcher         pytorch
2023-03-26 11:13:34,854   INFO  tcp_port         18888
2023-03-26 11:13:34,854   INFO  sync_bn          False
2023-03-26 11:13:34,855   INFO  fix_random_seed  True
2023-03-26 11:13:34,856   INFO  ckpt_save_interval 1
2023-03-26 11:13:34,856   INFO  max_ckpt_save_num 30
2023-03-26 11:13:34,857   INFO  merge_all_iters_to_one_epoch False
2023-03-26 11:13:34,858   INFO  set_cfgs         None
2023-03-26 11:13:34,859   INFO  max_waiting_mins 0
2023-03-26 11:13:34,859   INFO  start_epoch      0
2023-03-26 11:13:34,860   INFO  num_epochs_to_eval 0
2023-03-26 11:13:34,860   INFO  save_to_file     False
2023-03-26 11:13:34,861   INFO  cfg.ROOT_DIR: C:\PINKAMENA\CITYU\CS5182\proj\CAGroup3D
2023-03-26 11:13:34,862   INFO  cfg.LOCAL_RANK: 0
2023-03-26 11:13:34,863   INFO  cfg.CLASS_NAMES: ['bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser', 'night_stand', 'bookshelf', 'bathtub']
2023-03-26 11:13:34,864   INFO  
cfg.DATA_CONFIG = edict()
2023-03-26 11:13:34,865   INFO  cfg.DATA_CONFIG.DATASET: SunrgbdDataset
2023-03-26 11:13:34,866   INFO  cfg.DATA_CONFIG.DATA_PATH: ../data/sunrgbd_data/sunrgbd
2023-03-26 11:13:34,866   INFO  cfg.DATA_CONFIG.PROCESSED_DATA_TAG: sunrgbd_processed_data_v0_5_0
2023-03-26 11:13:34,868   INFO  cfg.DATA_CONFIG.POINT_CLOUD_RANGE: [-40, -40, -10, 40, 40, 10]
2023-03-26 11:13:34,869   INFO  
cfg.DATA_CONFIG.DATA_SPLIT = edict()
2023-03-26 11:13:34,869   INFO  cfg.DATA_CONFIG.DATA_SPLIT.train: train
2023-03-26 11:13:34,870   INFO  cfg.DATA_CONFIG.DATA_SPLIT.test: val
2023-03-26 11:13:34,870   INFO  
cfg.DATA_CONFIG.REPEAT = edict()
2023-03-26 11:13:34,871   INFO  cfg.DATA_CONFIG.REPEAT.train: 4
2023-03-26 11:13:34,872   INFO  cfg.DATA_CONFIG.REPEAT.test: 1
2023-03-26 11:13:34,873   INFO  
cfg.DATA_CONFIG.INFO_PATH = edict()
2023-03-26 11:13:34,874   INFO  cfg.DATA_CONFIG.INFO_PATH.train: ['sunrgbd_infos_train.pkl']
2023-03-26 11:13:34,875   INFO  cfg.DATA_CONFIG.INFO_PATH.test: ['sunrgbd_infos_val.pkl']
2023-03-26 11:13:34,876   INFO  cfg.DATA_CONFIG.GET_ITEM_LIST: ['points']
2023-03-26 11:13:34,877   INFO  cfg.DATA_CONFIG.FILTER_EMPTY_BOXES_FOR_TRAIN: True
2023-03-26 11:13:34,877   INFO  
cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN = edict()
2023-03-26 11:13:34,878   INFO  cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN.DISABLE_AUG_LIST: ['placeholder']
2023-03-26 11:13:34,879   INFO  cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN.AUG_CONFIG_LIST: [{'NAME': 'indoor_point_sample', 'num_points': 100000}, {'NAME': 'random_world_flip', 'ALONG_AXIS_LIST': ['y']}, {'NAME': 'random_world_rotation_mmdet3d', 'WORLD_ROT_ANGLE': [-0.523599, 0.523599]}, {'NAME': 'random_world_scaling', 'WORLD_SCALE_RANGE': [0.85, 1.15]}, {'NAME': 'random_world_translation', 'ALONG_AXIS_LIST': ['x', 'y', 'z'], 'NOISE_TRANSLATE_STD': 0.1}]
2023-03-26 11:13:34,881   INFO  
cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST = edict()
2023-03-26 11:13:34,882   INFO  cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST.DISABLE_AUG_LIST: ['placeholder']
2023-03-26 11:13:34,884   INFO  cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST.AUG_CONFIG_LIST: [{'NAME': 'indoor_point_sample', 'num_points': 100000}]
2023-03-26 11:13:34,884   INFO  
cfg.DATA_CONFIG.DATA_AUGMENTOR = edict()
2023-03-26 11:13:34,885   INFO  cfg.DATA_CONFIG.DATA_AUGMENTOR.DISABLE_AUG_LIST: ['placeholder']
2023-03-26 11:13:34,886   INFO  cfg.DATA_CONFIG.DATA_AUGMENTOR.AUG_CONFIG_LIST: [{'NAME': 'indoor_point_sample', 'num_points': 50000}]
2023-03-26 11:13:34,887   INFO  
cfg.DATA_CONFIG.POINT_FEATURE_ENCODING = edict()
2023-03-26 11:13:34,888   INFO  cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.encoding_type: absolute_coordinates_encoding
2023-03-26 11:13:34,889   INFO  cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.used_feature_list: ['x', 'y', 'z', 'r', 'g', 'b']
2023-03-26 11:13:34,890   INFO  cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.src_feature_list: ['x', 'y', 'z', 'r', 'g', 'b']
2023-03-26 11:13:34,892   INFO  cfg.DATA_CONFIG.DATA_PROCESSOR: [{'NAME': 'mask_points_and_boxes_outside_range', 'REMOVE_OUTSIDE_BOXES': False}]
2023-03-26 11:13:34,893   INFO  cfg.DATA_CONFIG._BASE_CONFIG_: cfgs/dataset_configs/sunrgbd_dataset.yaml
2023-03-26 11:13:34,894   INFO  cfg.VOXEL_SIZE: 0.02
2023-03-26 11:13:34,894   INFO  cfg.N_CLASSES: 10
2023-03-26 11:13:34,894   INFO  cfg.SEMANTIC_THR: 0.15
2023-03-26 11:13:34,895   INFO  
cfg.MODEL = edict()
2023-03-26 11:13:34,896   INFO  cfg.MODEL.NAME: CAGroup3D
2023-03-26 11:13:34,896   INFO  cfg.MODEL.VOXEL_SIZE: 0.02
2023-03-26 11:13:34,897   INFO  cfg.MODEL.SEMANTIC_MIN_THR: 0.05
2023-03-26 11:13:34,898   INFO  cfg.MODEL.SEMANTIC_ITER_VALUE: 0.02
2023-03-26 11:13:34,899   INFO  cfg.MODEL.SEMANTIC_THR: 0.15
2023-03-26 11:13:34,899   INFO  
cfg.MODEL.BACKBONE_3D = edict()
2023-03-26 11:13:34,900   INFO  cfg.MODEL.BACKBONE_3D.NAME: BiResNet
2023-03-26 11:13:34,900   INFO  cfg.MODEL.BACKBONE_3D.IN_CHANNELS: 3
2023-03-26 11:13:34,900   INFO  cfg.MODEL.BACKBONE_3D.OUT_CHANNELS: 64
2023-03-26 11:13:34,901   INFO  
cfg.MODEL.DENSE_HEAD = edict()
2023-03-26 11:13:34,902   INFO  cfg.MODEL.DENSE_HEAD.NAME: CAGroup3DHead
2023-03-26 11:13:34,902   INFO  cfg.MODEL.DENSE_HEAD.IN_CHANNELS: [64, 128, 256, 512]
2023-03-26 11:13:34,902   INFO  cfg.MODEL.DENSE_HEAD.OUT_CHANNELS: 64
2023-03-26 11:13:34,903   INFO  cfg.MODEL.DENSE_HEAD.SEMANTIC_THR: 0.15
2023-03-26 11:13:34,903   INFO  cfg.MODEL.DENSE_HEAD.VOXEL_SIZE: 0.02
2023-03-26 11:13:34,904   INFO  cfg.MODEL.DENSE_HEAD.N_CLASSES: 10
2023-03-26 11:13:34,904   INFO  cfg.MODEL.DENSE_HEAD.N_REG_OUTS: 8
2023-03-26 11:13:34,905   INFO  cfg.MODEL.DENSE_HEAD.CLS_KERNEL: 9
2023-03-26 11:13:34,906   INFO  cfg.MODEL.DENSE_HEAD.WITH_YAW: True
2023-03-26 11:13:34,907   INFO  cfg.MODEL.DENSE_HEAD.USE_SEM_SCORE: False
2023-03-26 11:13:34,907   INFO  cfg.MODEL.DENSE_HEAD.EXPAND_RATIO: 3
2023-03-26 11:13:34,908   INFO  
cfg.MODEL.DENSE_HEAD.ASSIGNER = edict()
2023-03-26 11:13:34,909   INFO  cfg.MODEL.DENSE_HEAD.ASSIGNER.NAME: CAGroup3DAssigner
2023-03-26 11:13:34,910   INFO  cfg.MODEL.DENSE_HEAD.ASSIGNER.LIMIT: 27
2023-03-26 11:13:34,910   INFO  cfg.MODEL.DENSE_HEAD.ASSIGNER.TOPK: 18
2023-03-26 11:13:34,911   INFO  cfg.MODEL.DENSE_HEAD.ASSIGNER.N_SCALES: 4
2023-03-26 11:13:34,911   INFO  
cfg.MODEL.DENSE_HEAD.LOSS_OFFSET = edict()
2023-03-26 11:13:34,912   INFO  cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.NAME: SmoothL1Loss
2023-03-26 11:13:34,912   INFO  cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.BETA: 0.04
2023-03-26 11:13:34,913   INFO  cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.REDUCTION: sum
2023-03-26 11:13:34,913   INFO  cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.LOSS_WEIGHT: 0.2
2023-03-26 11:13:34,914   INFO  
cfg.MODEL.DENSE_HEAD.LOSS_BBOX = edict()
2023-03-26 11:13:34,914   INFO  cfg.MODEL.DENSE_HEAD.LOSS_BBOX.NAME: IoU3DLoss
2023-03-26 11:13:34,915   INFO  cfg.MODEL.DENSE_HEAD.LOSS_BBOX.WITH_YAW: True
2023-03-26 11:13:34,916   INFO  cfg.MODEL.DENSE_HEAD.LOSS_BBOX.LOSS_WEIGHT: 1.0
2023-03-26 11:13:34,916   INFO  
cfg.MODEL.DENSE_HEAD.NMS_CONFIG = edict()
2023-03-26 11:13:34,917   INFO  cfg.MODEL.DENSE_HEAD.NMS_CONFIG.SCORE_THR: 0.01
2023-03-26 11:13:34,917   INFO  cfg.MODEL.DENSE_HEAD.NMS_CONFIG.NMS_PRE: 1000
2023-03-26 11:13:34,917   INFO  cfg.MODEL.DENSE_HEAD.NMS_CONFIG.IOU_THR: 0.5
2023-03-26 11:13:34,918   INFO  
cfg.MODEL.ROI_HEAD = edict()
2023-03-26 11:13:34,918   INFO  cfg.MODEL.ROI_HEAD.NAME: CAGroup3DRoIHead
2023-03-26 11:13:34,919   INFO  cfg.MODEL.ROI_HEAD.NUM_CLASSES: 10
2023-03-26 11:13:34,919   INFO  cfg.MODEL.ROI_HEAD.MIDDLE_FEATURE_SOURCE: [3]
2023-03-26 11:13:34,920   INFO  cfg.MODEL.ROI_HEAD.GRID_SIZE: 7
2023-03-26 11:13:34,921   INFO  cfg.MODEL.ROI_HEAD.VOXEL_SIZE: 0.02
2023-03-26 11:13:34,921   INFO  cfg.MODEL.ROI_HEAD.COORD_KEY: 2
2023-03-26 11:13:34,922   INFO  cfg.MODEL.ROI_HEAD.MLPS: [[64, 128, 128]]
2023-03-26 11:13:34,923   INFO  cfg.MODEL.ROI_HEAD.CODE_SIZE: 7
2023-03-26 11:13:34,924   INFO  cfg.MODEL.ROI_HEAD.ENCODE_SINCOS: True
2023-03-26 11:13:34,925   INFO  cfg.MODEL.ROI_HEAD.ROI_PER_IMAGE: 128
2023-03-26 11:13:34,926   INFO  cfg.MODEL.ROI_HEAD.ROI_FG_RATIO: 0.9
2023-03-26 11:13:34,926   INFO  cfg.MODEL.ROI_HEAD.REG_FG_THRESH: 0.3
2023-03-26 11:13:34,926   INFO  cfg.MODEL.ROI_HEAD.ROI_CONV_KERNEL: 5
2023-03-26 11:13:34,927   INFO  cfg.MODEL.ROI_HEAD.ENLARGE_RATIO: False
2023-03-26 11:13:34,927   INFO  cfg.MODEL.ROI_HEAD.USE_IOU_LOSS: True
2023-03-26 11:13:34,928   INFO  cfg.MODEL.ROI_HEAD.USE_GRID_OFFSET: False
2023-03-26 11:13:34,928   INFO  cfg.MODEL.ROI_HEAD.USE_SIMPLE_POOLING: True
2023-03-26 11:13:34,928   INFO  cfg.MODEL.ROI_HEAD.USE_CENTER_POOLING: True
2023-03-26 11:13:34,929   INFO  
cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS = edict()
2023-03-26 11:13:34,929   INFO  cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_CLS_WEIGHT: 1.0
2023-03-26 11:13:34,930   INFO  cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_REG_WEIGHT: 0.5
2023-03-26 11:13:34,930   INFO  cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_IOU_WEIGHT: 1.0
2023-03-26 11:13:34,931   INFO  cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.CODE_WEIGHT: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
2023-03-26 11:13:34,932   INFO  
cfg.MODEL.POST_PROCESSING = edict()
2023-03-26 11:13:34,933   INFO  cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST: [0.25, 0.5]
2023-03-26 11:13:34,934   INFO  cfg.MODEL.POST_PROCESSING.EVAL_METRIC: scannet
2023-03-26 11:13:34,934   INFO  
cfg.OPTIMIZATION = edict()
2023-03-26 11:13:34,935   INFO  cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU: 16
2023-03-26 11:13:34,935   INFO  cfg.OPTIMIZATION.NUM_EPOCHS: 1
2023-03-26 11:13:34,936   INFO  cfg.OPTIMIZATION.OPTIMIZER: adamW
2023-03-26 11:13:34,936   INFO  cfg.OPTIMIZATION.LR: 0.001
2023-03-26 11:13:34,937   INFO  cfg.OPTIMIZATION.WEIGHT_DECAY: 0.0001
2023-03-26 11:13:34,937   INFO  cfg.OPTIMIZATION.DECAY_STEP_LIST: [8, 11]
2023-03-26 11:13:34,938   INFO  cfg.OPTIMIZATION.LR_DECAY: 0.1
2023-03-26 11:13:34,938   INFO  cfg.OPTIMIZATION.GRAD_NORM_CLIP: 10
2023-03-26 11:13:34,939   INFO  cfg.OPTIMIZATION.PCT_START: 0.4
2023-03-26 11:13:34,940   INFO  cfg.OPTIMIZATION.DIV_FACTOR: 10
2023-03-26 11:13:34,941   INFO  cfg.OPTIMIZATION.LR_CLIP: 1e-07
2023-03-26 11:13:34,941   INFO  cfg.OPTIMIZATION.LR_WARMUP: False
2023-03-26 11:13:34,942   INFO  cfg.OPTIMIZATION.WARMUP_EPOCH: 1
2023-03-26 11:13:34,942   INFO  cfg.TAG: CAGroup3D
2023-03-26 11:13:34,942   INFO  cfg.EXP_GROUP_PATH: sunrgbd_models
2023-03-26 11:13:35,054   INFO  Loading SUNRGBD dataset
2023-03-26 11:13:35,212   INFO  Total samples for SUNRGBD dataset: 5285
2023-03-26 11:13:36,687   INFO  DistributedDataParallel(
  (module): CAGroup3D(
    (vfe): None
    (backbone_3d): BiResNet(
      (conv1): Sequential(
        (0): MinkowskiConvolution(in=3, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
        (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): MinkowskiReLU()
        (3): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
        (4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (5): MinkowskiReLU()
      )
      (relu): MinkowskiReLU()
      (layer1): Sequential(
        (0): BasicBlock(
          (conv1): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
          (downsample): Sequential(
            (0): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
            (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (1): BasicBlock(
          (conv1): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
        )
      )
      (layer2): Sequential(
        (0): BasicBlock(
          (conv1): MinkowskiConvolution(in=64, out=128, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
          (downsample): Sequential(
            (0): MinkowskiConvolution(in=64, out=128, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
            (1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (1): BasicBlock(
          (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
        )
      )
      (layer3): Sequential(
        (0): BasicBlock(
          (conv1): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
          (downsample): Sequential(
            (0): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
            (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (1): BasicBlock(
          (conv1): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
        )
      )
      (layer4): Sequential(
        (0): BasicBlock(
          (conv1): MinkowskiConvolution(in=256, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
          (downsample): Sequential(
            (0): MinkowskiConvolution(in=256, out=512, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
            (1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (1): BasicBlock(
          (conv1): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
        )
      )
      (compression3): Sequential(
        (0): MinkowskiConvolution(in=256, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
        (1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (compression4): Sequential(
        (0): MinkowskiConvolution(in=512, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
        (1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (down3): Sequential(
        (0): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
        (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (down4): Sequential(
        (0): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
        (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): MinkowskiReLU()
        (3): MinkowskiConvolution(in=256, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
        (4): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (layer3_): Sequential(
        (0): BasicBlock(
          (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
        )
        (1): BasicBlock(
          (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
        )
      )
      (layer4_): Sequential(
        (0): BasicBlock(
          (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
        )
        (1): BasicBlock(
          (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
        )
      )
      (layer5_): Sequential(
        (0): Bottleneck(
          (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm3): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
          (downsample): Sequential(
            (0): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
            (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
      )
      (layer5): Sequential(
        (0): Bottleneck(
          (conv1): MinkowskiConvolution(in=512, out=512, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): MinkowskiConvolution(in=512, out=1024, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm3): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
          (downsample): Sequential(
            (0): MinkowskiConvolution(in=512, out=1024, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
            (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
      )
      (spp): DAPPM(
        (scale1): Sequential(
          (0): MinkowskiAvgPooling(kernel_size=[5, 5, 5], stride=[2, 2, 2], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiReLU()
          (3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
        )
        (scale2): Sequential(
          (0): MinkowskiAvgPooling(kernel_size=[9, 9, 9], stride=[4, 4, 4], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiReLU()
          (3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
        )
        (scale3): Sequential(
          (0): MinkowskiAvgPooling(kernel_size=[17, 17, 17], stride=[8, 8, 8], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiReLU()
          (3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
        )
        (scale4): Sequential(
          (0): MinkowskiAvgPooling(kernel_size=[33, 33, 33], stride=[16, 16, 16], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiReLU()
          (3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
        )
        (scale0): Sequential(
          (0): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): MinkowskiReLU()
          (2): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
        )
        (process1): Sequential(
          (0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): MinkowskiReLU()
          (2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
        )
        (process2): Sequential(
          (0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): MinkowskiReLU()
          (2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
        )
        (process3): Sequential(
          (0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): MinkowskiReLU()
          (2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
        )
        (process4): Sequential(
          (0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): MinkowskiReLU()
          (2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
        )
        (compression): Sequential(
          (0): MinkowskiBatchNorm(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): MinkowskiReLU()
          (2): MinkowskiConvolution(in=640, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
        )
        (shortcut): Sequential(
          (0): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): MinkowskiReLU()
          (2): MinkowskiConvolution(in=1024, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
        )
      )
      (out): Sequential(
        (0): MinkowskiConvolutionTranspose(in=256, out=256, kernel_size=[2, 2, 2], stride=[2, 2, 2], dilation=[1, 1, 1])
        (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): MinkowskiReLU()
        (3): MinkowskiConvolution(in=256, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
        (4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (5): MinkowskiReLU()
      )
    )
    (map_to_bev_module): None
    (pfe): None
    (backbone_2d): None
    (dense_head): CAGroup3DHead(
      (loss_centerness): CrossEntropy()
      (loss_bbox): IoU3DLoss()
      (loss_cls): FocalLoss()
      (loss_sem): FocalLoss()
      (loss_offset): SmoothL1Loss()
      (offset_block): Sequential(
        (0): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
        (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): MinkowskiELU()
        (3): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
        (4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (5): MinkowskiELU()
        (6): MinkowskiConvolution(in=64, out=9, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
      )
      (feature_offset): Sequential(
        (0): MinkowskiConvolution(in=64, out=192, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
        (1): MinkowskiBatchNorm(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): MinkowskiELU()
      )
      (semantic_conv): MinkowskiConvolution(in=64, out=10, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
      (centerness_conv): MinkowskiConvolution(in=64, out=1, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
      (reg_conv): MinkowskiConvolution(in=64, out=8, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
      (cls_conv): MinkowskiConvolution(in=64, out=10, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
      (scales): ModuleList(
        (0): Scale()
        (1): Scale()
        (2): Scale()
        (3): Scale()
        (4): Scale()
        (5): Scale()
        (6): Scale()
        (7): Scale()
        (8): Scale()
        (9): Scale()
      )
      (cls_individual_out): ModuleList(
        (0): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (1): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (2): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (3): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (4): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (5): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (6): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (7): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (8): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (9): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
      )
      (cls_individual_up): ModuleList(
        (0): ModuleList(
          (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
          (1): Sequential(
            (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (1): MinkowskiELU()
          )
        )
        (1): ModuleList(
          (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
          (1): Sequential(
            (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (1): MinkowskiELU()
          )
        )
        (2): ModuleList(
          (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
          (1): Sequential(
            (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (1): MinkowskiELU()
          )
        )
        (3): ModuleList(
          (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
          (1): Sequential(
            (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (1): MinkowskiELU()
          )
        )
        (4): ModuleList(
          (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
          (1): Sequential(
            (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (1): MinkowskiELU()
          )
        )
        (5): ModuleList(
          (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
          (1): Sequential(
            (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (1): MinkowskiELU()
          )
        )
        (6): ModuleList(
          (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
          (1): Sequential(
            (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (1): MinkowskiELU()
          )
        )
        (7): ModuleList(
          (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
          (1): Sequential(
            (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (1): MinkowskiELU()
          )
        )
        (8): ModuleList(
          (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
          (1): Sequential(
            (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (1): MinkowskiELU()
          )
        )
        (9): ModuleList(
          (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
          (1): Sequential(
            (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (1): MinkowskiELU()
          )
        )
      )
      (cls_individual_fuse): ModuleList(
        (0): Sequential(
          (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (1): Sequential(
          (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (2): Sequential(
          (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (3): Sequential(
          (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (4): Sequential(
          (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (5): Sequential(
          (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (6): Sequential(
          (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (7): Sequential(
          (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (8): Sequential(
          (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (9): Sequential(
          (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
      )
      (cls_individual_expand_out): ModuleList(
        (0): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (1): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (2): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (3): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (4): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (5): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (6): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (7): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (8): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (9): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
      )
    )
    (point_head): None
    (roi_head): CAGroup3DRoIHead(
      (iou_loss_computer): IoU3DLoss()
      (proposal_target_layer): ProposalTargetLayer()
      (reg_loss_func): WeightedSmoothL1Loss()
      (roi_grid_pool_layers): ModuleList(
        (0): SimplePoolingLayer(
          (grid_conv): MinkowskiConvolution(in=64, out=128, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
          (grid_bn): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (grid_relu): MinkowskiELU()
          (pooling_conv): MinkowskiConvolution(in=128, out=128, kernel_size=[7, 7, 7], stride=[1, 1, 1], dilation=[1, 1, 1])
          (pooling_bn): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (reg_fc_layers): Sequential(
        (0): Linear(in_features=128, out_features=256, bias=False)
        (1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): ReLU()
        (3): Dropout(p=0.3, inplace=False)
        (4): Linear(in_features=256, out_features=256, bias=False)
        (5): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (6): ReLU()
      )
      (reg_pred_layer): Linear(in_features=256, out_features=8, bias=True)
    )
  )
)
2023-03-26 11:13:36,794   INFO  **********************Start training sunrgbd_models/CAGroup3D(cagroup3d-win10-sunrgbd)**********************
2023-03-26 12:29:52,942   INFO  Epoch [ 1][  50]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.20667796790599824, loss_bbox: 0.2990968986600637, loss_cls: 0.3071140018105507, loss_sem: 1.0371560204029082, loss_vote: 0.4092518210411072, one_stage_loss: 2.259296736717224, rcnn_loss_reg: 0.06894166469573974, rcnn_loss_iou: 0.03426224589347839, loss_two_stage: 0.10320390939712525, 
2023-03-26 13:52:01,310   INFO  Epoch [ 1][ 100]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.5310189422965049, loss_bbox: 0.7474155166745186, loss_cls: 0.6665185099840164, loss_sem: 0.6469615936279297, loss_vote: 0.3759205311536789, one_stage_loss: 2.967835102081299, rcnn_loss_reg: 0.4916525638103485, rcnn_loss_iou: 0.31042004823684693, loss_two_stage: 0.8020726108551025, 
2023-03-26 15:16:34,527   INFO  Epoch [ 1][ 150]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.47814485549926755, loss_bbox: 0.6697727379202842, loss_cls: 0.5062539026141166, loss_sem: 0.5720264983177185, loss_vote: 0.3539592534303665, one_stage_loss: 2.580157253742218, rcnn_loss_reg: 0.4772424042224884, rcnn_loss_iou: 0.2981147265434265, loss_two_stage: 0.7753571343421936, 
2023-03-26 16:42:56,533   INFO  Epoch [ 1][ 200]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.5514369648694992, loss_bbox: 0.7656048792600632, loss_cls: 0.5199696916341782, loss_sem: 0.5628203338384629, loss_vote: 0.3609760856628418, one_stage_loss: 2.7608079433441164, rcnn_loss_reg: 0.5857562351226807, rcnn_loss_iou: 0.35664750695228575, loss_two_stage: 0.9424037384986877, 
2023-03-26 18:04:56,578   INFO  Epoch [ 1][ 250]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.47652084708213804, loss_bbox: 0.6971965312957764, loss_cls: 0.4520271807909012, loss_sem: 0.6041016298532486, loss_vote: 0.35814492881298066, one_stage_loss: 2.587991120815277, rcnn_loss_reg: 0.29248207330703735, rcnn_loss_iou: 0.1785850465297699, loss_two_stage: 0.47106712102890014, 
2023-03-26 19:28:39,683   INFO  Epoch [ 1][ 300]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.5167306911945343, loss_bbox: 0.7328562247753143, loss_cls: 0.45524279356002806, loss_sem: 0.515706689953804, loss_vote: 0.32769578754901885, one_stage_loss: 2.5482321834564208, rcnn_loss_reg: 0.35428098678588865, rcnn_loss_iou: 0.21939268827438355, loss_two_stage: 0.5736736750602722, 
2023-03-26 20:53:09,330   INFO  Epoch [ 1][ 350]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.604567551612854, loss_bbox: 0.8178253293037414, loss_cls: 0.5145705115795135, loss_sem: 0.4814878588914871, loss_vote: 0.30948863834142687, one_stage_loss: 2.727939887046814, rcnn_loss_reg: 0.8254446721076966, rcnn_loss_iou: 0.5003487575054169, loss_two_stage: 1.3257934308052064, 
2023-03-26 22:14:45,021   INFO  Epoch [ 1][ 400]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.5232829931378364, loss_bbox: 0.729054206609726, loss_cls: 0.4304437929391861, loss_sem: 0.6052549344301223, loss_vote: 0.32101795822381973, one_stage_loss: 2.609053874015808, rcnn_loss_reg: 0.47852428913116457, rcnn_loss_iou: 0.29645866751670835, loss_two_stage: 0.7749829506874084, 
2023-03-26 23:39:29,069   INFO  Epoch [ 1][ 450]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.4240903949737549, loss_bbox: 0.6023871430754661, loss_cls: 0.43437127619981764, loss_sem: 0.58591732442379, loss_vote: 0.31612290561199186, one_stage_loss: 2.362889051437378, rcnn_loss_reg: 0.3720583057403564, rcnn_loss_iou: 0.2311265003681183, loss_two_stage: 0.6031848061084747, 
2023-03-27 01:03:24,345   INFO  Epoch [ 1][ 500]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.3820648092031479, loss_bbox: 0.5443513408303261, loss_cls: 0.36938557237386704, loss_sem: 0.6360691225528717, loss_vote: 0.31682781159877776, one_stage_loss: 2.2486986470222474, rcnn_loss_reg: 0.36717917561531066, rcnn_loss_iou: 0.23230359673500062, loss_two_stage: 0.5994827747344971, 
2023-03-27 02:25:21,026   INFO  Epoch [ 1][ 550]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.5708097213506699, loss_bbox: 0.7884046626091004, loss_cls: 0.5089094871282578, loss_sem: 0.5691659837961197, loss_vote: 0.3056716549396515, one_stage_loss: 2.742961506843567, rcnn_loss_reg: 0.6101349353790283, rcnn_loss_iou: 0.3731300795078278, loss_two_stage: 0.9832650113105774, 
2023-03-27 03:44:41,116   INFO  Epoch [ 1][ 600]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.5802704590559006, loss_bbox: 0.7960068082809448, loss_cls: 0.459269055724144, loss_sem: 0.5500217407941819, loss_vote: 0.29440259009599684, one_stage_loss: 2.6799706506729124, rcnn_loss_reg: 0.6698205232620239, rcnn_loss_iou: 0.40001817524433136, loss_two_stage: 1.069838695526123, 
2023-03-27 05:05:05,293   INFO  Epoch [ 1][ 650]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.5250428706407547, loss_bbox: 0.7363606292009354, loss_cls: 0.4330296140909195, loss_sem: 0.6324895197153091, loss_vote: 0.3019771608710289, one_stage_loss: 2.6288998174667357, rcnn_loss_reg: 0.4743223488330841, rcnn_loss_iou: 0.290767160654068, loss_two_stage: 0.7650895142555236, 
2023-03-27 06:23:27,892   INFO  Epoch [ 1][ 700]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.5444362837076188, loss_bbox: 0.7522995507717133, loss_cls: 0.4244315469264984, loss_sem: 0.45511561155319213, loss_vote: 0.3005108740925789, one_stage_loss: 2.476793870925903, rcnn_loss_reg: 0.5306920790672303, rcnn_loss_iou: 0.31801644802093504, loss_two_stage: 0.8487085247039795, 
2023-03-27 07:47:41,250   INFO  Epoch [ 1][ 750]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.6098733115196228, loss_bbox: 0.8267546522617341, loss_cls: 0.45813657343387604, loss_sem: 0.47525602877140044, loss_vote: 0.2934702724218369, one_stage_loss: 2.6634908294677735, rcnn_loss_reg: 0.7940043830871581, rcnn_loss_iou: 0.4807016372680664, loss_two_stage: 1.2747060203552245, 
2023-03-27 09:12:50,838   INFO  Epoch [ 1][ 800]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.5564212232828141, loss_bbox: 0.7674001061916351, loss_cls: 0.4770412653684616, loss_sem: 0.5462373447418213, loss_vote: 0.28620937079191205, one_stage_loss: 2.6333092975616457, rcnn_loss_reg: 0.633576123714447, rcnn_loss_iou: 0.390158035159111, loss_two_stage: 1.0237341594696046, 
2023-03-27 10:33:02,697   INFO  Epoch [ 1][ 850]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.6046576589345932, loss_bbox: 0.8187049305438996, loss_cls: 0.44491772472858426, loss_sem: 0.5175370579957962, loss_vote: 0.2872957721352577, one_stage_loss: 2.6731131219863893, rcnn_loss_reg: 0.7730563342571258, rcnn_loss_iou: 0.4753589242696762, loss_two_stage: 1.2484152507781983, 
2023-03-27 11:57:22,870   INFO  Epoch [ 1][ 900]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.6090051412582398, loss_bbox: 0.8095787620544433, loss_cls: 0.4284948009252548, loss_sem: 0.544955484867096, loss_vote: 0.289944207072258, one_stage_loss: 2.6819783878326415, rcnn_loss_reg: 0.8724133563041687, rcnn_loss_iou: 0.5291033411026, loss_two_stage: 1.4015166926383973, 
2023-03-27 13:17:06,861   INFO  Epoch [ 1][ 950]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.5685943412780762, loss_bbox: 0.789885265827179, loss_cls: 0.4120765841007233, loss_sem: 0.44937529861927034, loss_vote: 0.2983333826065063, one_stage_loss: 2.5182648515701294, rcnn_loss_reg: 0.532546899318695, rcnn_loss_iou: 0.33089754700660706, loss_two_stage: 0.863444447517395, 
2023-03-27 14:41:55,361   INFO  Epoch [ 1][1000]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.6334057796001434, loss_bbox: 0.8424523377418518, loss_cls: 0.4098082458972931, loss_sem: 0.40657821238040925, loss_vote: 0.2823134985566139, one_stage_loss: 2.5745581150054933, rcnn_loss_reg: 0.8423162472248077, rcnn_loss_iou: 0.514250785112381, loss_two_stage: 1.3565670371055603, 
2023-03-27 16:00:37,355   INFO  Epoch [ 1][1050]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.5406019860506057, loss_bbox: 0.7440398615598679, loss_cls: 0.39454961895942686, loss_sem: 0.5495830583572388, loss_vote: 0.2843384724855423, one_stage_loss: 2.5131130170822145, rcnn_loss_reg: 0.6645504760742188, rcnn_loss_iou: 0.4026562488079071, loss_two_stage: 1.0672067260742188, 
2023-03-27 17:20:17,667   INFO  Epoch [ 1][1100]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.5215873223543167, loss_bbox: 0.7336350619792938, loss_cls: 0.41735528588294984, loss_sem: 0.4811014491319656, loss_vote: 0.29286098569631575, one_stage_loss: 2.4465401220321654, rcnn_loss_reg: 0.40519655585289, rcnn_loss_iou: 0.2512069880962372, loss_two_stage: 0.656403546333313, 
2023-03-27 18:39:11,247   INFO  Epoch [ 1][1150]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.5330367308855056, loss_bbox: 0.7439761543273926, loss_cls: 0.40116438329219817, loss_sem: 0.5646754199266434, loss_vote: 0.29715222597122193, one_stage_loss: 2.5400049018859865, rcnn_loss_reg: 0.6408816885948181, rcnn_loss_iou: 0.39092864990234377, loss_two_stage: 1.031810338497162, 
2023-03-27 20:02:50,511   INFO  Epoch [ 1][1200]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.6315625596046448, loss_bbox: 0.8405828297138214, loss_cls: 0.4183447903394699, loss_sem: 0.3946588611602783, loss_vote: 0.28028561860322954, one_stage_loss: 2.565434675216675, rcnn_loss_reg: 0.8700305473804474, rcnn_loss_iou: 0.5194281542301178, loss_two_stage: 1.3894586968421936, 
2023-03-27 21:25:10,486   INFO  Epoch [ 1][1250]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.6114491987228393, loss_bbox: 0.8168105685710907, loss_cls: 0.4101775807142258, loss_sem: 0.4728459024429321, loss_vote: 0.27880846709012985, one_stage_loss: 2.590091710090637, rcnn_loss_reg: 0.8118275630474091, rcnn_loss_iou: 0.4983943772315979, loss_two_stage: 1.3102219486236573, 
2023-03-27 22:47:39,311   INFO  Epoch [ 1][1300]/[1322] : lr:  1.000e-03, sem_thr: 0.15, loss_centerness: 0.6145700442790986, loss_bbox: 0.81527019739151, loss_cls: 0.3963031381368637, loss_sem: 0.4105939191579819, loss_vote: 0.27149350941181183, one_stage_loss: 2.5082308149337766, rcnn_loss_reg: 0.8241646671295166, rcnn_loss_iou: 0.4978309834003449, loss_two_stage: 1.3219956469535827, 
2023-03-27 23:26:17,307   INFO  **********************End training sunrgbd_models/CAGroup3D(cagroup3d-win10-sunrgbd)**********************



2023-03-27 23:26:17,309   INFO  **********************Start evaluation sunrgbd_models/CAGroup3D(cagroup3d-win10-sunrgbd)**********************
2023-03-27 23:26:17,310   INFO  Loading SUNRGBD dataset
2023-03-27 23:26:17,476   INFO  Total samples for SUNRGBD dataset: 5050
2023-03-27 23:26:17,484   INFO  ==> Loading parameters from checkpoint C:\PINKAMENA\CITYU\CS5182\proj\CAGroup3D\output\sunrgbd_models\CAGroup3D\cagroup3d-win10-sunrgbd\ckpt\checkpoint_epoch_1.pth to CPU
2023-03-27 23:26:18,098   INFO  ==> Checkpoint trained from version: pcdet+0.5.2+18bc5f5+py60edc0c
2023-03-27 23:26:18,162   INFO  ==> Done (loaded 638/638)
2023-03-27 23:26:19,088   INFO  *************** EPOCH 1 EVALUATION *****************