61347023S's picture
Update README.md
cd331f3 verified
|
raw
history blame
3.02 kB
metadata
license: mit
base_model: microsoft/xtremedistil-l6-h384-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: xtremedistil-l6-h384-uncased-v1.1
    results: []

xtremedistil-l6-h384-uncased-v1.1

This model is a fine-tuned version of microsoft/xtremedistil-l6-h384-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5278
  • F1 Macro: 0.6999
  • F1 Micro: 0.7000
  • Accuracy Balanced: 0.7017
  • Accuracy: 0.7000
  • Precision Macro: 0.7009
  • Recall Macro: 0.7017
  • Precision Micro: 0.7000
  • Recall Micro: 0.7000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 40
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 3

Training results

Datasets asadfgglie/nli-zh-tw-all/test asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test eval_dataset test_dataset
eval_loss 0.511 0.701 0.539 0.528
eval_f1_macro 0.717 0.488 0.684 0.7
eval_f1_micro 0.718 0.506 0.684 0.7
eval_accuracy_balanced 0.719 0.501 0.687 0.702
eval_accuracy 0.718 0.506 0.684 0.7
eval_precision_macro 0.718 0.501 0.686 0.701
eval_recall_macro 0.719 0.501 0.687 0.702
eval_precision_micro 0.718 0.506 0.684 0.7
eval_recall_micro 0.718 0.506 0.684 0.7
eval_runtime 8.805 0.188 1.873 7.442
eval_samples_per_second 965.397 5039.361 1008.401 1015.398
eval_steps_per_second 7.61 42.616 8.007 8.062
Size of dataset 8500 946 1889 7557

eval result

Datasets asadfgglie/nli-zh-tw-all/test asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test eval_dataset test_dataset
eval_loss 0.511 0.701 0.539 0.528
eval_f1_macro 0.717 0.488 0.684 0.7
eval_f1_micro 0.718 0.506 0.684 0.7
eval_accuracy_balanced 0.719 0.501 0.687 0.702
eval_accuracy 0.718 0.506 0.684 0.7
eval_precision_macro 0.718 0.501 0.686 0.701
eval_recall_macro 0.719 0.501 0.687 0.702
eval_precision_micro 0.718 0.506 0.684 0.7
eval_recall_micro 0.718 0.506 0.684 0.7
eval_runtime 8.405 0.176 1.864 7.407
eval_samples_per_second 1011.367 5358.555 1013.595 1020.275
eval_steps_per_second 7.972 45.315 8.049 8.101
epoch 3.0 3.0 3.0 3.0
Size of dataset 8500 946 1889 7557

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.5.1+cu121
  • Datasets 2.14.7
  • Tokenizers 0.13.3