metadata
license: mit
base_model: vicgalle/xlm-roberta-large-xnli-anli
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlm-roberta-large-xnli-anli-v5.0
results: []
xlm-roberta-large-xnli-anli-v5.0
This model is a fine-tuned version of vicgalle/xlm-roberta-large-xnli-anli on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5120
- F1 Macro: 0.8215
- F1 Micro: 0.8223
- Accuracy Balanced: 0.8216
- Accuracy: 0.8223
- Precision Macro: 0.8215
- Recall Macro: 0.8216
- Precision Micro: 0.8223
- Recall Micro: 0.8223
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9e-06
- train_batch_size: 8
- eval_batch_size: 64
- seed: 40
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
---|---|---|---|---|---|---|---|---|---|---|---|
0.3779 | 0.85 | 200 | 0.4494 | 0.8020 | 0.8020 | 0.8084 | 0.8020 | 0.8088 | 0.8084 | 0.8020 | 0.8020 |
0.2646 | 1.69 | 400 | 0.4425 | 0.8113 | 0.8121 | 0.8126 | 0.8121 | 0.8108 | 0.8126 | 0.8121 | 0.8121 |
0.1961 | 2.54 | 600 | 0.5222 | 0.8131 | 0.8147 | 0.8129 | 0.8147 | 0.8135 | 0.8129 | 0.8147 | 0.8147 |
eval result
Datasets | asadfgglie/nli-zh-tw-all/test | asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test | eval_dataset | test_dataset |
---|---|---|---|---|
eval_loss | 0.541 | 0.26 | 0.517 | 0.512 |
eval_f1_macro | 0.809 | 0.918 | 0.814 | 0.822 |
eval_f1_micro | 0.81 | 0.918 | 0.815 | 0.822 |
eval_accuracy_balanced | 0.809 | 0.918 | 0.815 | 0.822 |
eval_accuracy | 0.81 | 0.918 | 0.815 | 0.822 |
eval_precision_macro | 0.809 | 0.918 | 0.814 | 0.821 |
eval_recall_macro | 0.809 | 0.918 | 0.815 | 0.822 |
eval_precision_micro | 0.81 | 0.918 | 0.815 | 0.822 |
eval_recall_micro | 0.81 | 0.918 | 0.815 | 0.822 |
eval_runtime | 50.676 | 0.617 | 11.139 | 44.314 |
eval_samples_per_second | 167.732 | 1532.353 | 169.579 | 170.532 |
eval_steps_per_second | 2.625 | 24.297 | 2.693 | 2.685 |
Size of dataset | 8500 | 946 | 1889 | 7557 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.5.1+cu121
- Datasets 2.14.7
- Tokenizers 0.13.3