File size: 3,110 Bytes
f49e164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
793605e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f49e164
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: mit
base_model: vicgalle/xlm-roberta-large-xnli-anli
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlm-roberta-large-xnli-anli-v5.0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta-large-xnli-anli-v5.0

This model is a fine-tuned version of [vicgalle/xlm-roberta-large-xnli-anli](https://huggingface.co/vicgalle/xlm-roberta-large-xnli-anli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5120
- F1 Macro: 0.8215
- F1 Micro: 0.8223
- Accuracy Balanced: 0.8216
- Accuracy: 0.8223
- Precision Macro: 0.8215
- Recall Macro: 0.8216
- Precision Micro: 0.8223
- Recall Micro: 0.8223

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 9e-06
- train_batch_size: 8
- eval_batch_size: 64
- seed: 40
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:|
| 0.3779        | 0.85  | 200  | 0.4494          | 0.8020   | 0.8020   | 0.8084            | 0.8020   | 0.8088          | 0.8084       | 0.8020          | 0.8020       |
| 0.2646        | 1.69  | 400  | 0.4425          | 0.8113   | 0.8121   | 0.8126            | 0.8121   | 0.8108          | 0.8126       | 0.8121          | 0.8121       |
| 0.1961        | 2.54  | 600  | 0.5222          | 0.8131   | 0.8147   | 0.8129            | 0.8147   | 0.8135          | 0.8129       | 0.8147          | 0.8147       |

### eval result
|Datasets|asadfgglie/nli-zh-tw-all/test|asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test|eval_dataset|test_dataset|
| :---: | :---: | :---: | :---: | :---: |
|eval_loss|0.541|0.26|0.517|0.512|
|eval_f1_macro|0.809|0.918|0.814|0.822|
|eval_f1_micro|0.81|0.918|0.815|0.822|
|eval_accuracy_balanced|0.809|0.918|0.815|0.822|
|eval_accuracy|0.81|0.918|0.815|0.822|
|eval_precision_macro|0.809|0.918|0.814|0.821|
|eval_recall_macro|0.809|0.918|0.815|0.822|
|eval_precision_micro|0.81|0.918|0.815|0.822|
|eval_recall_micro|0.81|0.918|0.815|0.822|
|eval_runtime|50.676|0.617|11.139|44.314|
|eval_samples_per_second|167.732|1532.353|169.579|170.532|
|eval_steps_per_second|2.625|24.297|2.693|2.685|
|Size of dataset|8500|946|1889|7557|

### Framework versions

- Transformers 4.33.3
- Pytorch 2.5.1+cu121
- Datasets 2.14.7
- Tokenizers 0.13.3