61347023S's picture
Update README.md
c83c5ff verified
|
raw
history blame
3.11 kB
metadata
license: mit
base_model: vicgalle/xlm-roberta-large-xnli-anli
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: xlm-roberta-large-xnli-anli-v5.0
    results: []

xlm-roberta-large-xnli-anli-v5.0

This model is a fine-tuned version of vicgalle/xlm-roberta-large-xnli-anli on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5120
  • F1 Macro: 0.8215
  • F1 Micro: 0.8223
  • Accuracy Balanced: 0.8216
  • Accuracy: 0.8223
  • Precision Macro: 0.8215
  • Recall Macro: 0.8216
  • Precision Micro: 0.8223
  • Recall Micro: 0.8223

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 9e-06
  • train_batch_size: 8
  • eval_batch_size: 64
  • seed: 40
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro Accuracy Balanced Accuracy Precision Macro Recall Macro Precision Micro Recall Micro
0.3779 0.85 200 0.4494 0.8020 0.8020 0.8084 0.8020 0.8088 0.8084 0.8020 0.8020
0.2646 1.69 400 0.4425 0.8113 0.8121 0.8126 0.8121 0.8108 0.8126 0.8121 0.8121
0.1961 2.54 600 0.5222 0.8131 0.8147 0.8129 0.8147 0.8135 0.8129 0.8147 0.8147

eval result

Datasets asadfgglie/nli-zh-tw-all/test asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test eval_dataset test_dataset
eval_loss 0.541 0.26 0.517 0.512
eval_f1_macro 0.809 0.918 0.814 0.822
eval_f1_micro 0.81 0.918 0.815 0.822
eval_accuracy_balanced 0.809 0.918 0.815 0.822
eval_accuracy 0.81 0.918 0.815 0.822
eval_precision_macro 0.809 0.918 0.814 0.821
eval_recall_macro 0.809 0.918 0.815 0.822
eval_precision_micro 0.81 0.918 0.815 0.822
eval_recall_micro 0.81 0.918 0.815 0.822
eval_runtime 50.716 0.611 11.113 44.249
eval_samples_per_second 167.6 1548.868 169.977 170.785
eval_steps_per_second 2.622 24.559 2.699 2.689
Size of dataset 8500 946 1889 7557

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.5.1+cu121
  • Datasets 2.14.7
  • Tokenizers 0.13.3