--- license: mit base_model: vicgalle/xlm-roberta-large-xnli-anli tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlm-roberta-large-xnli-anli-v5.0 results: [] --- # xlm-roberta-large-xnli-anli-v5.0 This model is a fine-tuned version of [vicgalle/xlm-roberta-large-xnli-anli](https://huggingface.co/vicgalle/xlm-roberta-large-xnli-anli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5120 - F1 Macro: 0.8215 - F1 Micro: 0.8223 - Accuracy Balanced: 0.8216 - Accuracy: 0.8223 - Precision Macro: 0.8215 - Recall Macro: 0.8216 - Precision Micro: 0.8223 - Recall Micro: 0.8223 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-06 - train_batch_size: 8 - eval_batch_size: 64 - seed: 40 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:| | 0.3779 | 0.85 | 200 | 0.4494 | 0.8020 | 0.8020 | 0.8084 | 0.8020 | 0.8088 | 0.8084 | 0.8020 | 0.8020 | | 0.2646 | 1.69 | 400 | 0.4425 | 0.8113 | 0.8121 | 0.8126 | 0.8121 | 0.8108 | 0.8126 | 0.8121 | 0.8121 | | 0.1961 | 2.54 | 600 | 0.5222 | 0.8131 | 0.8147 | 0.8129 | 0.8147 | 0.8135 | 0.8129 | 0.8147 | 0.8147 | ### eval result |Datasets|asadfgglie/nli-zh-tw-all/test|asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test|eval_dataset|test_dataset| | :---: | :---: | :---: | :---: | :---: | |eval_loss|0.541|0.26|0.517|0.512| |eval_f1_macro|0.809|0.918|0.814|0.822| |eval_f1_micro|0.81|0.918|0.815|0.822| |eval_accuracy_balanced|0.809|0.918|0.815|0.822| |eval_accuracy|0.81|0.918|0.815|0.822| |eval_precision_macro|0.809|0.918|0.814|0.821| |eval_recall_macro|0.809|0.918|0.815|0.822| |eval_precision_micro|0.81|0.918|0.815|0.822| |eval_recall_micro|0.81|0.918|0.815|0.822| |eval_runtime|50.716|0.611|11.113|44.249| |eval_samples_per_second|167.6|1548.868|169.977|170.785| |eval_steps_per_second|2.622|24.559|2.699|2.689| |Size of dataset|8500|946|1889|7557| ### Framework versions - Transformers 4.33.3 - Pytorch 2.5.1+cu121 - Datasets 2.14.7 - Tokenizers 0.13.3